
Everyone Can Code and Develop in Swift

Ontario Grades 1–8 Mathematics: Algebra (2020)
Ontario Grade 9 Mathematics: Algebra (2021)
Ontario Grades 10–12: Computer Studies (2008)

Ontario 1–12
Correlations

Resources

 2

Visit Website: 2020 Ontario 1–8 Mathematics Curriulum | Coding

Visit Website: 2021 Ontario 9 Mathematics Curriculum | Coding

Visit Website: 2008 Ontario 10-12 Computer Studies Curriculum

ON 1–12
Correlations Resources

Everyone Can Code
Early Learners

Download Teacher Guide

Everyone Can Code
Playgrounds

Download Student Book

Download Teacher Guide

Everyone Can Code
Adventures

Download Student Book

Download Teacher Guide

Develop in Swift
Explorations

Download Student Book

Download Teacher Guide

https://books.apple.com/book/id1481279769
https://books.apple.com/book/id1481279144
apple.co/code-early-learners_ENCA
https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics
https://www.dcp.edu.gov.on.ca/en/curriculum/secondary-mathematics/courses/mth1w/c/c2
http://www.edu.gov.on.ca/eng/curriculum/secondary/computer10to12_2008.pdf
https://books.apple.com/ca/book/id1514850778
https://books.apple.com/ca/book/id1514850776
https://books.apple.com/book/id1556366287?itscg=edu&itsct=dis_xcode_sc21_na_enca
https://books.apple.com/book/id1556366247?itscg=edu&itsct=dis_xcode_sc21_na_enca

Contents

 3

Ontario Correlations

ON 1–12
Correlations Contents

Grade 1 4

Grade 2 6

Grade 3 8

Grade 4 10

Grade 5 13

Grade 6 15

Grade 7 17

Grade 8 20

Grade 9 24

Grade 10 28

Grade 11 45

Grade 12 87

Grade 1

 4
ON 1–12
Correlations Grade 1

Back to Contents

Back to Resources

Everyone Can Code
Early Learners Teacher Guide

5

Grade 1 Everyone Can Code
Early Learners Teacher Guide

 5
ON 1–12
Correlations Grade 1

Ontario
Curriculum
Expectations

Commands
pp. 8–14

Functions
pp. 15–21

For Loops
pp. 22–28

Variables
pp. 29–35

App. Design
pp. 36–38

Mathematics:
Algebra

Overall
Expectations

C3. Solve problems and create
computational representations of
mathematical situations using coding
concepts and skills

• • • • •

Specific
Expectations

C3.1 Solve problems and create
computational representations of
mathematical situations by writing
and executing code, including code
that involves sequential events

•

C3.2 Read and alter existing code,
including code that involves
sequential events, and describe how
changes to the code affect the
outcomes

•

Mathematics

Grade 2

 6
ON 1–12
Correlations Grade 2

Back to Contents

Back to Resources

Everyone Can Code
Early Learners Teacher Guide

7

Grade 2 Everyone Can Code
Early Learners Teacher Guide

 7
ON 1–12
Correlations Grade 2

Ontario
Curriculum
Expectations

Commands
pp. 8–14

Functions
pp. 15–21

For Loops
pp. 22–28

Variables
pp. 29–35

App Design
pp. 36–38

Mathematics:
Algebra

Overall
Expectations

C3. Solve problems and create
computational representations of
mathematical situations using coding
concepts and skills

• • • • •

Specific
Expectations

C3.1 Solve problems and create
computational representations of
mathematical situations by writing
and executing code, including code
that involves sequential and
concurrent events

• •

C3.2 Read and alter existing code,
including code that involves
sequential and concurrent events,
and describe how changes to the
code affect the outcomes

• •

Mathematics

Grade 3

 8
ON 1–12
Correlations Grade 3

Back to Contents

Back to Resources

Everyone Can Code
Early Learners Teacher Guide

9

Grade 3 Everyone Can Code
Early Learners Teacher Guide

 9
ON 1–12
Correlations Grade 3

Ontario
Curriculum
Expectations

Commands
pp. 8–14

Functions
pp. 15–21

For Loops
pp. 22–28

Variables
pp. 29–35

App Design
pp. 36–38

Mathematics:
Algebra

Overall
Expectations

C3. Solve problems and create
computational representations of
mathematical situations using coding
concepts and skills

• • • • •

Specific
Expectations

C3.1 Solve problems and create
computational representations of
mathematical situations by writing
and executing code, including code
that involves sequential, concurrent,
and repeating events

• • • •

C3.2 Read and alter existing code,
including code that involves
sequential, concurrent, and repeating
events, and describe how changes to
the code affect the outcomes

• • • •

Mathematics

Grade 4

 10
ON 1–12
Correlations Grade 4

Back to Contents

Back to Resources

Everyone Can Code
Early Learners Teacher Guide

Everyone Can Code
Puzzles Teacher Guide

11

12

Grade 4 Everyone Can Code
Early Learners Teacher Guide

 11
ON 1–12
Correlations Grade 4

Ontario
Curriculum
Expectations

Commands
pp. 8–14

Functions
pp. 15–21

For Loops
pp. 22–28

Variables
pp. 29–35

App Design
pp. 36–38

Mathematics:
Algebra

Overall
Expectations

C3. Solve problems and create
computational representations of
mathematical situations using coding
concepts and skills

• • • • •

Specific
Expectations

C3.1 Solve problems and create
computational representations of
mathematical situations by writing
and executing code, including code
that involves sequential, concurrent,
repeating, and nested events

• • • • •

C3.2 Read and alter existing code,
including code that involves
sequential, concurrent, repeating, and
nested events, and describe how
changes to the code affect the
outcomes

• • • • •

Mathematics

Grade 4 Everyone Can Code
Puzzles Teacher Guide

 12
ON 1–12
Correlations Grade 4

Mathematics

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While Loops
pp. 174–192

Arrays and
Refactoring
pp. 193–214

Mathematics:
Algebra

Overall
Expectations

C3. Solve problems
and create
computational
representations of
mathematical
situations using
coding concepts
and skills

• • • • • • • • • •

Specific
Expectations

C3.1 Solve
problems and
create
computational
representations of
mathematical
situations by
writing and
executing code,
including code that
involves sequential,
concurrent,
repeating, and
nested events

• • •

C3.2 Read and alter
existing code,
including code that
involves sequential,
concurrent,
repeating, and
nested events, and
describe how
changes to the
code affect the
outcomes

• • •

Grade 5

 13
ON 1–12
Correlations Grade 5

Back to Contents

Back to Resources

Everyone Can Code
Puzzles Teacher Guide 14

Grade 5 Everyone Can Code
Puzzles Teacher Guide

 14
ON 1–12
Correlations Grade 5

Mathematics

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While Loops
pp. 174–192

Arrays and
Refactoring
pp. 193–214

Mathematics:
Algebra

Overall
Expectations

C3. Solve problems
and create
computational
representations of
mathematical
situations using
coding concepts
and skills

• • • • • • • • • •

Specific
Expectations

C3.1 Solve
problems and
create
computational
representations of
mathematical
situations by
writing and
executing code,
including code that
involves conditional
statements and
other control
structures

• • • • • • • • • •

C3.2 Read and alter
existing code,
including code that
involves conditional
statements and
other control
structures, and
describe how
changes to the
code affect the
outcomes

• • • • • • • • • •

Grade 6

 15
ON 1–12
Correlations Grade 6

Back to Contents

Back to Resources

Everyone Can Code
Puzzles Teacher Guide 16

Grade 6 Everyone Can Code
Puzzles Teacher Guide

 16
ON 1–12
Correlations Grade 6

Mathematics

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While Loops
pp. 174–192

Arrays and
Refactoring
pp. 193–214

Mathematics:
Algebra

Overall
Expectations

C3. Solve problems
and create
computational
representations of
mathematical
situations using
coding concepts
and skills

• • • • • • • • • •

Specific
Expectations

C3.1 Solve
problems and
create
computational
representations of
mathematical
situations by
writing and
executing efficient
code, including
code that involves
conditional
statements and
other control
structures

• • • • • • • • • •

C3.2 Read and alter
existing code,
including code that
involves conditional
statements and
other control
structures, and
describe how
changes to the
code affect the
outcomes and the
efficiency of
the code

• • • • • • • • • •

Grade 7

 17
ON 1–12
Correlations Grade 7

Back to Contents

Back to Resources

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

18

19

Grade 7 Everyone Can Code
Puzzles Teacher Guide

 18
ON 1–12
Correlations Grade 7

Mathematics

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While Loops
pp. 174–192

Arrays and
Refactoring
pp. 193–214

Mathematics:
Algebra

Overall
Expectations

C3. Solve problems
and create
computational
representations of
mathematical
situations using
coding concepts
and skills

• • • • • • • • • •

Specific
Expectations

C3.1 Solve
problems and
create
computational
representations of
mathematical
situations by
writing and
executing efficient
code, including
code that involves
events influenced
by a defined count
and/or sub-
program and other
control structures

• • • • • • • • • •

C3.2 Read and alter
existing code,
including code that
involves events
influenced by a
defined count and/
or sub-program
and other control
structures, and
describe how
changes to the
code affect the
outcomes and the
efficiency of
the code

• • • • • • •

Grade 7 Everyone Can Code
Adventures Teacher Guide

 19
ON 1–12
Correlations Grade 7

Mathematics

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in Views
pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events and
Handlers

pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

Mathematics:
Algebra

Overall
Expectations

C3. Solve problems and create
computational representations
of mathematical situations
using coding concepts
and skills

• • • • • • •

Specific
Expectations

C3.1 Solve problems and
create computational
representations of
mathematical situations by
writing and executing efficient
code, including code that
involves events influenced by a
defined count and/or sub-
program and other control
structures

• • • • • • •

C3.2 Read and alter existing
code, including code that
involves events influenced by a
defined count and/or sub-
program and other control
structures, and describe how
changes to the code affect the
outcomes and the efficiency of
the code

• • • • • • •

Grade 8

 20
ON 1–12
Correlations Grade 8

Back to Contents

Back to Resources

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

21

22

23

Grade 8 Everyone Can Code
Puzzles Teacher Guide

 21
ON 1–12
Correlations Grade 8

Mathematics

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While Loops
pp. 174–192

Arrays and
Refactoring
pp. 193–214

Mathematics:
Algebra

Overall
Expectations

C3. Solve problems
and create
computational
representations of
mathematical
situations using
coding concepts
and skills

• • • • • • • • • •

Specific
Expectations

C3.1 Solve
problems and
create
computational
representations of
mathematical
situations by
writing and
executing code,
including code that
involves the
analysis of data in
order to inform and
communicate
decisions

• • • • • • • • • •

C3.2 read and alter
existing code
involving the
analysis of data in
order to inform and
communicate
decisions, and
describe how
changes to the
code affect the
outcomes and the
efficiency of the
code

• • • • • • • • • •

Grade 8 Everyone Can Code
Adventures Teacher Guide

 22
ON 1–12
Correlations Grade 8

Mathematics

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in Views
pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events and
Handlers

pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

Mathematics:
Algebra

Overall
Expectations

C3. Solve problems and create
computational representations
of mathematical situations
using coding concepts
and skills

• • • • • • •

Specific
Expectations

C3.1 Solve problems and
create computational
representations of
mathematical situations by
writing and executing code,
including code that involves
the analysis of data in order to
inform and communicate
decisions

• • • • • • •

C3.2 Read and alter existing
code involving the analysis of
data in order to inform and
communicate decisions, and
describe how changes to the
code affect the outcomes and
the efficiency of the code

• • • • • • •

Grade 8 Develop in Swift
Explorations Teacher Guide

 23
ON 1–12
Correlations Grade 8

Mathematics

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–136

Episode 1:
The TV Club
pp. 137–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4:
Building Apps
pp. 483–702

Mathematics:
Algebra

Overall
Expectations

C3. Solve problems and create
computational representations
of mathematical situations
using coding concepts
and skills

Specific
Expectations

C3.1 Solve problems and
create computational
representations of
mathematical situations by
writing and executing code,
including code that involves
the analysis of data in order to
inform and communicate
decisions

• • • • • • •

C3.2 Read and alter existing
code involving the analysis of
data in order to inform and
communicate decisions, and
describe how changes to the
code affect the outcomes and
the efficiency of the code

• • • • • • •

Grade 9

 24
ON 1–12
Correlations Grade 9

Back to Contents

Back to Resources

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

25

26

27

Grade 9 Everyone Can Code
Puzzles Teacher Guide

 25
ON 1–12
Correlations Grade 9

Mathematics

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While Loops
pp. 174–192

Arrays and
Refactoring
pp. 193–214

Mathematics:
Algebra

Overall
Expectations

C2. Apply coding
skills to represent
mathematical
concepts and
relationships
dynamically, and to
solve problems, in
algebra and across
the other strands

• • • • • • • • • •

Specific
Expectations

C2.1 Use coding to
demonstrate an
understanding of
algebraic concepts
including variables,
parameters,
equations, and
inequalities

• • • • • • •

C2.2 Create code
by decomposing
situations into
computational
steps in order to
represent
mathematical
concepts and
relationships, and
to solve problems

• • • • • • • • • •

C2.3 Read code to
predict its outcome,
and alter code to
adjust constraints,
parameters, and
outcomes to
represent a
similar or new
mathematical
situation

• • • • • • • • • •

Grade 9 Everyone Can Code
Adventures Teacher Guide

 26
ON 1–12
Correlations Grade 9

Mathematics

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in Views
pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events and
Handlers

pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

Math:
Algebra

Overall
Expectations

C2. Apply coding skills to
represent mathematical
concepts and relationships
dynamically, and to solve
problems, in algebra and
across the other strands

• • • • • • •

Specific
Expectations

C2.1 Use coding to
demonstrate an understanding
of algebraic concepts including
variables, parameters,
equations, and inequalities

• • • • • • •

C2.2 Create code by
decomposing situations into
computational steps in order to
represent mathematical
concepts and relationships,
and to solve problems

• • • • • • •

C2.3 Read code to predict its
outcome, and alter code to
adjust constraints, parameters,
and outcomes to represent a
similar or new mathematical
situation

• • • • • • •

Grade 9 Develop in Swift
Explorations Teacher Guide

 27
ON 1–12
Correlations Grade 9

Mathematics

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–136

Episode 1:
The TV Club
pp. 137–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4:
Building Apps
pp. 483–702

Math:
Algebra

Overall
Expectations

C2. Apply coding skills to
represent mathematical
concepts and relationships
dynamically, and to solve
problems, in algebra and
across the other strands

• • • •

Specific
Expectations

C2.1 Use coding to
demonstrate an understanding
of algebraic concepts including
variables, parameters,
equations, and inequalities

• • • •

C2.2 Create code by
decomposing situations into
computational steps in order to
represent mathematical
concepts and relationships,
and to solve problems

• • • •

C2.3 Read code to predict its
outcome, and alter code to
adjust constraints, parameters,
and outcomes to represent a
similar or new mathematical
situation

• • • •

ICS2O
Intro to Computer Studies

Open

Grade 10

 28
ON 1–12
Correlations Grade 10

Back to Contents

Back to Resources

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

29

36

40

ON 1–12
Correlations Grade 10

Grade 10

 29

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–12

Functions
pp. 13–23

For Loops
pp. 24–33

Variables
pp. 34–46

Conditional
Code

pp. 47–59

Types and
Initialization

pp. 60–68

Functions
with

Parameters
pp. 69–78

Logical
Operators
pp. 79–87

While Loops
pp. 88–96

Arrays and
Refactoring
pp. 97–108

Computer
Studies

Overall
Expectations

A2. Describe the different
types of software
products, and assess the
software needs of users

• •

A3. Use the basic
functions of an operating
system correctly

• • • • • • • • • •
B1. Describe fundamental
programming concepts
and constructs

• • • • • • • • • • •
B2. Plan and write simple
programs using
fundamental
programming concepts

• • • • • • • • • •

B3. Apply basic code
maintenance techniques
when writing programs

• • • • • • • • • •
C1. Describe key aspects
of the impact of
computers and related
technologies on society

• • • • • • • • • • •

C3. Describe legal and
ethical issues related to
the use of computing
devices

•

C4. Describe
postsecondary education
and career prospects
related to computer
studies

Everyone Can Code
Puzzles Teachers Guide

ICS2O — Intro to Computer Studies

 30
ON 1–12
Correlations

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

Grade 10

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–12

Functions
pp. 13–23

For Loops
pp. 24–33

Variables
pp. 34–46

Conditional
Code

pp. 47–59

Types and
Initialization

pp. 60–68

Functions
with

Parameters
pp. 69–78

Logical
Operators
pp. 79–87

While Loops
pp. 88–96

Arrays and
Refactoring
pp. 97–108

Computer
Studies

A2.
Software Products

A2.2 Assess user
computing needs and
select appropriate
software for different
situations (e.g., a student
on a fixed budget, a home
business user, a gaming
enthusiast, a
photographer, a home
video enthusiast, a
distance education user,
a human resources
manager, an accountant)

• •

A3.
Operating Systems

A3.3 Use general
keyboard shortcuts to
perform common tasks
(e.g., cut, copy, paste,
print, print window, print
screen)

• • • • • • • • • •

A4.
Operating Systems

A4.2 Describe the
features and functions of
wired and wireless
networking hardware
(e.g., NICs, routers, hubs,
cables, modems)

B1.
Programming Concepts

B1.1 Use correct
terminology to describe
programming concepts

• • • • • • • • • • •
B1.2 Describe the types
of data that computers
can process and store
(e.g., numbers, text)

• • • • • • • • • • •

B1.3 Explain the
difference between
constants and variables
used in programming

• • • • • • •

 31
ON 1–12
Correlations

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

Grade 10

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–12

Functions
pp. 13–23

For Loops
pp. 24–33

Variables
pp. 34–46

Conditional
Code

pp. 47–59

Types and
Initialization

pp. 60–68

Functions
with

Parameters
pp. 69–78

Logical
Operators
pp. 79–87

While Loops
pp. 88–96

Arrays and
Refactoring
pp. 97–108

Computer
Studies

B1.
Programming Concepts

B1.5 Identify situations in
which decision and
looping structures are
required

• • • • • • • • •

B1.6 Describe the
function of Boolean
operators (e.g., AND, OR,
NOT), comparison
operators (i.e., equal to,
not equal to, greater than,
less than, greater than or
equal to, less than or
equal to), and arithmetic
operators (e.g., addition,
subtraction,
multiplication, division,
exponentiation,
parentheses), and use
them correctly in
programming

• • • • • • •

B2.
Writing Programs

B2.1 Use a visual problem
solving model (e.g., IPO
[Input, Process, Output]
chart; HIPO [Hierarchy
plus Input, Process,
Output] chart and
diagram; flow chart;
storyboard) to plan the
content of a program

• • • • • • • • • •

B2.2 Use variables,
expressions, and
assignment statements
to store and manipulate
numbers and text in a
program (e.g., in a quiz
program, in a unit
conversion program)

• • • • • • • •

B2.3 Write keyboard
input and screen output
statements that conform
to program specifications

• • • • • • • • • •

B2.4 Write a program
that includes a decision
structure for two or more
choices (e.g., guessing
game, rock, paper,
scissors game, multiple-
choice quiz, trivia game)

• • • • • •

 32
ON 1–12
Correlations

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

Grade 10

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–12

Functions
pp. 13–23

For Loops
pp. 24–33

Variables
pp. 34–46

Conditional
Code

pp. 47–59

Types and
Initialization

pp. 60–68

Functions
with

Parameters
pp. 69–78

Logical
Operators
pp. 79–87

While Loops
pp. 88–96

Arrays and
Refactoring
pp. 97–108

Computer
Studies

B2.
Writing Programs

B2.5 Write programs that
use looping structures
effectively (e.g., simple
animation, simple board
games, coin toss)

• • • • • • • •

B2.6 Explain the
difference between
syntax, logic, and
run-time errors

• • • • • • • • • •

B2.7 Compare and
contrast the use of
different programming
environments to solve the
same problem (e.g., a
solution developed in a
programming language
versus one developed
using a spreadsheet)

• • • • • • • • • •

B3.
Computer Maintenance

B3.1 Write clear and
maintainable code using
proper programming
standards (e.g.,
indentation; naming
conventions for
constants, variables,
and expressions)

• • • • • • • • • •

B3.3 Use a tracing
technique to understand
program flow and to
identify and correct logic
and run-time errors in a
computer program

• • • • • • • • • •

 33
ON 1–12
Correlations

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

Grade 10

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–12

Functions
pp. 13–23

For Loops
pp. 24–33

Variables
pp. 34–46

Conditional
Code

pp. 47–59

Types and
Initialization

pp. 60–68

Functions
with

Parameters
pp. 69–78

Logical
Operators
pp. 79–87

While Loops
pp. 88–96

Arrays and
Refactoring
pp. 97–108

Computer
Studies

C1.
Social Impact

C1.1 Describe a variety of
adaptive technologies
that help to improve
computer accessibility
(e.g., text to speech,
speech to text, adapted
mouse, font control,
ergonomic keyboard,
virtual keyboard, sticky
keys, colour contrast,
image magnifier)

• • • •

C1.2 Explain the impact
on privacy of techniques
for collecting and
processing data (e.g.,
camera phones, reward
programs, targeted
advertising, digital rights
management,
monitoring software)

•

C1.3 Describe how
portable computing
devices (e.g., PDA, cell
phone, GPS, laptop)
affect our everyday lives

C1.4 Describe how
electronic access to
information (e.g., instant
messaging, webcasts,
social networking sites,
wikis, blogs, video
sharing sites) influences
our everyday lives, as well
as the lives of people in
various countries around
the world, in both positive
and negative ways

• • • • • • • • • • •

C1.5 Describe issues
associated with access to
online services (e.g.,
reliability of passwords,
network security, identity
theft, the permanence of
information released onto
the Internet)

•

 34
ON 1–12
Correlations

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

Grade 10

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–12

Functions
pp. 13–23

For Loops
pp. 24–33

Variables
pp. 34–46

Conditional
Code

pp. 47–59

Types and
Initialization

pp. 60–68

Functions
with

Parameters
pp. 69–78

Logical
Operators
pp. 79–87

While Loops
pp. 88–96

Arrays and
Refactoring
pp. 97–108

Computer
Studies

C3.
Ethical Issues

C3.1 Describe legal and
ethical issues related to
the use of computers
(e.g., music and video file
downloading, spyware,
identity theft, phishing,
keystroke logging, packet
sniffing, cyberbullying)

• • • •

C3.2 Describe
safeguards (e.g.,
effective passwords,
secure websites,
firewalls, biometric data)
for pre– venting the
unethical use of
computers

•

C4.
Postsecondary
Opportunities

C4.1 Research and
describe trends in
careers that require
computer skills, using
local and national
sources (e.g., local
newspaper, national
newspaper, career
websites)

●

C4.2 Research and report
on postsecondary
educational programs
leading to careers in the
field of information
systems and computer
science (e.g., institutions
offering relevant
programs, industry
certifications, courses of
study, entrance
requirements, length of
programs, costs)

●

 35
ON 1–12
Correlations

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

Grade 10

Ontario
Curriculum
Expectations

Intro
pp. i–

xiv

Commands
pp. 1–12

Functions
pp. 13–23

For Loops
pp. 24–33

Variables
pp. 34–46

Conditional
Code

pp. 47–59

Types and
Initialization

pp. 60–68

Functions
with

Parameters
pp. 69–78

Logical
Operators
pp. 79–87

While Loops
pp. 88–96

Arrays and
Refactoring
pp. 97–108

Computer
Studies

C4.
Postsecondary
Opportunities

C4.3 Identify groups and
programs that are
available to support
students who are
interest–ed in pursuing
nontraditional career
choices in computer
related fields (e.g.,
mentoring programs,
virtual networking/
support groups,
specialized
postsecondary programs,
relevant trade/industry
associations)

●

C4.4 Identify the
Essential Skills and work
habits that are important
for success in computer
studies, as defined in the
Ontario Skills Passport

●

ON 1–12
Correlations Grade 10

Grade 10

 36

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

Computer
Studies

Overall
Expectations

A2. Describe the different types of software
products, and assess the software needs of
users

• • • • • • •
A3. Use the basic functions of an operating
system correctly • • • • • • •
B1. Describe fundamental programming
concepts and constructs • • • • • • •
B2. Plan and write simple programs using
fundamental programming concepts • • • • • • •
B3. Apply basic code maintenance
techniques when writing programs • • • • • • •
C1. Describe key aspects of the impact of
computers and related technologies
on society

•
C3. Describe legal and ethical issues related
to the use of computing devices; •
C4. Describe postsecondary education and
career prospects related to computer studies • • •

A2.
Software Products

A2.2 Assess user computing needs and
select appropriate software for different
situations (e.g., a student on a fixed budget, a
home business user, a gaming enthusiast, a
photographer, a home video enthusiast, a
distance education user, a human resources
manager, an accountant)

• • • • •

A3.
Operating Systems

A3.3 Use general keyboard shortcuts to
perform common tasks (e.g., cut, copy, paste,
print, print window, print screen)

• • • • • • •

Everyone Can Code
Adventures Teacher Guide

ICS2O — Intro to Computer Studies

 37
ON 1–12
Correlations

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

Grade 10

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

Computer
Studies

A4
Home Networking

A4.2 Describe the features and functions of
wired and wireless networking hardware (e.g.,
NICs, routers, hubs, cables, modems)

B1.
Programming Concepts

B1.1 Use correct terminology to describe
programming concepts • • • • • • • •
B1.2 Describe the types of data that
computers can process and store (e.g.,
numbers, text)

• • • • • • • •

B1.3 Explain the difference between
constants and variables used in programming • • • • • • •
B1.4 Determine the expressions and
instructions to use in a programming
statement, taking into account the order of
operations (e.g., precedence of arithmetic
operators, assignment operators, and
relational operators)

• • • • • • •

B1.5 Identify situations in which decision and
looping structures are required • • • • • • •
B1.6 Describe the function of Boolean
operators (e.g., AND, OR, NOT), comparison
operators (i.e., equal to, not equal to, greater
than, less than, greater than or equal to, less
than or equal to), and arithmetic operators
(e.g., addition, subtraction, multiplication,
division, exponentiation, parentheses), and
use them correctly in programming

• •

B2.
Writing Programs

B2.1 Use a visual problem solving model (e.g.,
IPO [Input, Process, Output] chart; HIPO
[Hierarchy plus Input, Process, Output] chart
and diagram; flow chart; storyboard) to plan
the content of a program;

• • • • • • •

B2.2 Use variables, expressions, and
assignment statements to store and
manipulate numbers and text in a program
(e.g., in a quiz program, in a unit conversion
program)

• • • • • • •

B2.3 Write keyboard input and screen output
statements that conform to program
specifications

• • • • • •

 38
ON 1–12
Correlations

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

Grade 10

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

Computer
Studies

B2.
Writing Programs

B2.4 Write a program that includes a decision
structure for two or more choices (e.g.,
guessing game, rock, paper, scissors game,
multiple-choice quiz, trivia game)

• • • • • • •

B2.5 Write programs that use looping
structures effectively (e.g., simple animation,
simple board games, coin toss)

• • • • • • •
B2.6 Explain the difference between syntax,
logic, and run-time errors • • • • • • •
B2.7 Compare and contrast the use of
different programming environments to solve
the same problem (e.g., a solution developed
in a programming language versus one
developed using a spreadsheet)

• • • • • • •

B3.
Computer Maintenance

B3.1 Write clear and maintainable code using
proper programming standards (e.g.,
indentation; naming conventions for
constants, variables, and expressions)

• • • • • • •

B3.3 Use a tracing technique to understand
program flow and to identify and correct logic
and run-time errors in a computer program

• • • • • • •

C1.
Social Impact

C1.1 Describe a variety of adaptive
technologies that help to improve computer
accessibility (e.g., text to speech, speech to
text, adapted mouse, font control, ergonomic
keyboard, virtual keyboard, sticky keys,
colour contrast, image magnifier)

• • • •

C1.2 Explain the impact on privacy of
techniques for collecting and processing data
(e.g., camera phones, reward programs,
targeted advertising, digital rights
management, monitoring software)

• •

C1.3 Describe how portable computing
devices (e.g., PDA, cell phone, GPS, laptop)
affect our everyday lives

• •
C1.4 Describe how electronic access to
information (e.g., instant messaging,
webcasts, social networking sites, wikis,
blogs, video sharing sites) influences our
everyday lives, as well as the lives of people
in various countries around the world, in both
positive and negative ways

• •

 39
ON 1–12
Correlations

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

Grade 10

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

Computer
Studies

C1.
Social Impact

C1.5 Describe issues associated with access
to online services (e.g., reliability of
passwords, network security, identity theft,
the permanence of information released onto
the Internet)

C3.
Ethical Issues

C3.1 Describe legal and ethical issues related
to the use of computers (e.g., music and
video file downloading, spyware, identity
theft, phishing, keystroke logging, packet
sniffing, cyberbullying)

•

C3.2 Describe safeguards (e.g., effective
passwords, secure websites, firewalls,
biometric data) for pre– venting the unethical
use of computers

•

C4.
Postsecondary Opportunities

C4.1 Research and describe trends in careers
that require computer skills, using local and
national sources (e.g., local newspaper,
national newspaper, career websites)

• • •

C4.2 Research and report on postsecondary
educational programs leading to careers in
the field of information systems and
computer science (e.g., institutions offering
relevant programs, industry certifications,
courses of study, entrance requirements,
length of programs, costs)

C4.3 Identify groups and programs that are
available to support students who are interest
ed in pursuing non-traditional career choices
in computer-related fields (e.g., mentoring
programs, virtual networking/support groups,
specialized postsecondary programs,
relevant trade/industry associations)

•

C4.4 Identify the Essential Skills and work
habits that are important for success in
computer studies, as defined in the Ontario
Skills Passport

•

Grade 10
ON 1–12
Correlations

Grade 10

 40

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1:
Values

pp. 28–138

Episode 1:
The TV Club
pp. 137–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing
Photos

pp. 449–482

Unit 4:
Building Apps
pp. 483–702

Computer
Studies

Overall
Expectations

A2. Describe the different types of software
products, and assess the software needs of
users

● ● ● ● ● ●

B1. Describe fundamental programming
concepts and constructs ● ● ● ● ● ● ● ●

B2. Plan and write simple programs using
fundamental programming concepts ● ● ● ● ● ● ●

B3. Apply basic code maintenance
techniques when writing programs ● ● ● ●

C1. Describe key aspects of the impact of
computers and related technologies on
society

●

C3. Describe legal and ethical issues
related to the use of computing devices; ●

C4. Describe postsecondary education and
career prospects related to computer
studies

●

A2.
Software Products

A2.2 Assess user computing needs and
select appropriate software for different
situations (e.g., a student on a fixed budget,
a home business user, a gaming enthusiast,
a photographer, a home video enthusiast, a
distance education user, a human
resources manager, an accountant)

• • • • • •

A3.
Operating Systems

A3.3 Use general keyboard shortcuts to
perform common tasks (e.g., cut, copy,
paste, print, print window, print screen)

• • • •

Develop in Swift
Explorations Teacher Guide

ICS2O – Intro to Computer Studies

 41
ON 1–12
Correlations

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

Grade 10

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1:
Values

pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing
Photos

pp. 449–482

Unit 4:
Building Apps
pp. 483–702

Computer
Studies

A4
Home Networking

A4.2 Describe the features and functions of
wired and wireless networking hardware
(e.g., NICs, routers, hubs, cables, modems)

● ● ● ●

B1.
Programming Concepts

B1.1 Use correct terminology to describe
programming concepts ● ● ● ● ● ● ● ●

B1.2 Describe the types of data that
computers can process and store (e.g.,
numbers, text)

● ● ● ● ● ● ●

B1.3 Explain the difference between
constants and variables used in
programming

● ● ● ●

B1.4 Determine the expressions and
instructions to use in a programming
statement, taking into account the order of
operations (e.g., precedence of arithmetic
operators, assignment operators, and
relational operators)

● ● ● ●

B1.5 Identify situations in which decision
and looping structures are required ● ● ●

B1.6 Describe the function of Boolean
operators (e.g., AND, OR, NOT),
comparison operators (i.e., equal to, not
equal to, greater than, less than, greater
than or equal to, less than or equal to), and
arithmetic operators (e.g., addition,
subtraction, multiplication, division,
exponentiation, parentheses), and use them
correctly in programming

● ● ●

B2.
Writing Programs

B2.1 Use a visual problem-solving model
(e.g., IPO [Input, Process, Output] chart;
HIPO [Hierarchy plus Input, Process,
Output] chart and diagram; flow chart;
storyboard) to plan the content of a
program;

• • • •

B2.2 Use variables, expressions, and
assignment statements to store and
manipulate numbers and text in a program
(e.g., in a quiz program, in a unit conversion
program)

• • • •

B2.3 Write keyboard input and screen
output statements that conform to program
specifications

• • • •

 42
ON 1–12
Correlations

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

Grade 10

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1:
Values

pp. 28–138

Episode 1:
The TV

Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing
Photos

pp. 449–482

Unit 4:
Building Apps
pp. 483–702

Computer
Studies

B2.
Writing Programs

B2.4 Write a program that includes a
decision structure for two or more choices
(e.g., guessing game, rock, paper, scissors
game, multiple-choice quiz, trivia game)

• • • •

B2.5 Write programs that use looping
structures effectively (e.g., simple
animation, simple board games, coin toss)

• • •
B2.6 Explain the difference between syntax,
logic, and run-time errors • • • •
B2.7 Compare and contrast the use of
different programming environments to
solve the same problem (e.g., a solution
developed in a programming language
versus one developed using a spreadsheet)

• • • •

B3.
Computer Maintenance

B3.1 Write clear and maintainable code
using proper programming standards (e.g.,
indentation; naming conventions for
constants, variables, and expressions)

• • • •

B3.2 Write clear and maintainable internal
documentation to a specific set of
standards (e.g., program header: author,
revision date, program name, program
description; table of variable names and
descriptions)

• • • •

B3.3 Use a tracing technique to understand
program flow and to identify and correct
logic and run-time errors in a computer
program

• • • •

C1.
Social Impact

C1.1 Describe a variety of adaptive
technologies that help to improve computer
accessibility (e.g., text to speech, speech to
text, adapted mouse, font control,
ergonomic keyboard, virtual keyboard,
sticky keys, colour contrast, image
magnifier)

•

C1.2 Explain the impact on privacy of
techniques for collecting and processing
data (e.g., camera phones, reward
programs, targeted advertising, digital
rights management, monitoring software)

 43
ON 1–12
Correlations

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

Grade 10

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1:
Values

pp. 28–138

Episode 1:
The TV

Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing
Photos

pp. 449–482

Unit 4:
Building Apps
pp. 483–702

Computer
Studies

C1.
Social Impact

C1.3 Describe how portable computing
devices (e.g., PDA, cell phone, GPS, laptop)
affect our everyday lives

C1.4 Describe how electronic access to
information (e.g., instant messaging,
webcasts, social networking sites, wikis,
blogs, video sharing sites) influences our
everyday lives, as well as the lives of people
in various countries around the world, in
both positive and negative ways

C1.5 Describe issues associated with
access to online services (e.g., reliability of
passwords, network security, identity theft,
the permanence of information released
onto the Internet)

•

C3.
Ethical Issues

C3.1 Describe legal and ethical issues
related to the use of computers (e.g., music
and video file downloading, spyware,
identity theft, phishing, keystroke logging,
packet sniffing, cyberbullying)

C3.2 Describe safeguards (e.g., effective
passwords, secure websites, firewalls,
biometric data) for preventing the unethical
use of computers

•

C4.
Postsecondary Opportunities

C4.1 Research and describe trends in
careers that require computer skills, using
local and national sources (e.g., local
newspaper, national newspaper, career
websites)

C4.2 Research and report on
postsecondary educational programs
leading to careers in the field of information
systems and computer science (e.g.,
institutions offering relevant programs,
industry certifications, courses of study,
entrance requirements, length of
programs, costs)

•

 44
ON 1–12
Correlations

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

Grade 10

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1:
Values

pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing
Photos

pp. 449–482

Unit 4:
Building Apps
pp. 483–702

Computer
Studies

C4.
Postsecondary Opportunities

C4.3 Identify groups and programs that are
available to support students who are
interested in pursuing nontraditional career
choices in computer-related fields (e.g.,
mentoring programs, virtual networking/
support groups, specialized postsecondary
programs, relevant trade/industry
associations)

•

C4.4 Identify the Essential Skills and work
habits that are important for success in
computer studies, as defined in the Ontario
Skills Passport

Grade 11

 45
ON 1–12
Correlations Grade 11

Back to Contents

Back to Resources

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

46

53

59

ICS3C
Intro to Computer Programming

College Preparation

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

65

73

80

ICS3U
Intro to Computer Science

University Preparation

ON 1–12
Correlations Grade 11

Grade 11

 46

Everyone Can Code
Puzzles Teacher Guide

ICS3C — Intro to Computer Programming

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 134–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

A. Programming
Concepts and skills

Overall Expectations `

A1. Demonstrate the
ability to use different
data types, in
expressions in simple
computer programs

● ● ● ● ● ● ● ● ● ●

A2. Demonstrate the
ability to use control
structures and simple
algorithms in computer
programs

● ● ● ● ● ● ● ● ● ●

A3. Use proper code
maintenance techniques
and conventions when
creating computer
programs

● ● ● ● ● ● ● ● ● ●

A1.
Data Types and
Expressions

`

A1.1 Use constants and
variables, including
integers, floating points,
strings, and Boolean
values, correctly in
computer programs

● ● ● ● ● ● ● ● ● ●

A1.2 Demonstrate the
ability to manipulate
string data in a computer
program (e.g., swap two
characters, capitalize
first letter, extract a
portion of an address,
count the occurrences of
a word or letter)

● ●

A1.3 Use assignment
statements correctly with
both arithmetic and
string expressions in
computer programs (e.g.,
numStudents = 4 + 2,
name = “Devi”)

● ● ● ● ● ● ● ●

 47

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

ICS3UICS3C

Everyone Can Code
Adventures Teacher Guide

ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 134–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

A. Programming
Concepts and skills

A1.
Data Types and
Expressions

`

A1.4 Use Boolean
operators (e.g., AND,
OR, NOT), comparison
operators (i.e., equal to,
not equal to, greater
than, less than, greater
than or equal to, less
than or equal to),
arithmetic operators
(e.g., addition,
subtraction,
multiplication, division,
exponentiation,
parentheses), and order
of operations correctly

● ● ● ● ●

A2.
Control Structures and
Simple Algorithms

`

A2.1 Write programs that
incorporate user input,
processing, and screen
output

● ● ● ● ● ● ● ● ● ●

A2.2 Use sequence,
selection, and repetition
control structures to
create programming
solutions

● ● ● ● ● ● ● ● ● ●

A2.3 Demonstrate the
ability to write algorithms
with nested structures

● ● ● ● ●

A3.
Code Maintenance `

A3.1 Explain the
difference between
syntax, logic, and run-
time errors in computer
programs

● ● ● ● ● ● ● ● ● ● ●

A3.2 Demonstrate the
ability to correct syntax,
logic, and run-time errors
in computer programs

● ● ● ● ● ● ● ● ● ●

Grade 11

 48

ICS3UICS3C

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 134–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

A. Programming
Concepts and skills

A1.
Data Types and
Expressions

`

A3.3 Use workplace and
professional conventions
(e.g., naming, indenting,
commenting) correctly to
write programs and
internal documentation

● ● ● ● ● ● ● ● ● ●

A3.4 Demonstrate the
ability to interpret error
messages displayed by
programming tools (e.g.,
compiler, debugging
tool), at different times
during the software
development process
(e.g., writing,
compilation, testing)

● ● ● ● ● ● ● ● ● ●

B. Software
Development

Overall
Expectations

B1. Use a variety of
problem solving
strategies to solve
different types of
problems

● ● ● ● ● ● ● ● ● ●

B2. Design software
solutions to meet a
variety of challenges,
using a set of standards

● ● ● ● ● ● ● ● ● ●

B3. Design simple
algorithms according to
specifications

● ● ● ● ● ● ● ● ● ●

B1.
Problem-solving
Strategies

B1.1 Use various
problem-solving
strategies to solve
programming problems

● ● ● ● ● ● ● ● ● ●

B1.2 Use the input-
process-output model to
solve programming
problems

● ● ● ● ● ● ● ● ● ●

ON 1–12
Correlations Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 49

ICS3UICS3C

ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 134–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

B. Software
Development

B2.
Designing Software
Solutions

B2.1 Design a simple
program from a program
template or skeleton
(e.g., teacher-supplied
skeleton, Help facility
code snippet)

● ● ● ● ● ● ● ● ● ●

B2.2 Use appropriate
vocabulary and mode of
expression (i.e., written,
oral, diagrammatic) to
describe alternative
program designs and to
explain the structure of a
program

● ● ● ● ● ● ● ● ● ● ●

B2.3 Write subprograms
(e.g., functions,
procedures) that perform
one well-defined task
and use parameter
passing and appropriate
variable scope (e.g.,
local, global)

● ● ●

B2.4 Use industry-
standard programming
tools (e.g., structure
chart, flow chart, UML
[Unified Modeling
Language], data flow
diagram, pseudocode) to
represent the structure
and components of a
computer program

● ● ● ● ● ● ● ● ● ●

B3.
Designing Simple
Algorithms

`

B3.1 Use simple
algorithms (e.g., validate
entered data, count,
accumulate, use random
numbers) to design a
program according to
specifications

● ● ● ● ● ● ● ● ● ●

B3.2 Solve problems (e.g.,
calculation of gross pay;
fuel consumption on a car
trip; average of students’
marks; temperature at a
given altitude, using the
environmental lapse rate)
by applying mathematical
equations or formulas in
an algorithm

● ● ● ● ● ● ● ●

Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 50

ICS3UICS3C

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Condition
al Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 134–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

B. Software
Development

B4.
The Software
Development Life Cycle

`

B4.2 Use a variety of
techniques (e.g.,
dialogue, questionnaires,
surveys, research) to
clarify program
specifications

● ● ● ● ● ● ● ● ● ● ●

B4.4 Use a test plan to
test programs (i.e.,
identify test scenarios,
identify suitable input
data, calculate expected
outcomes, record actual
outcomes, and conclude
’pass‘ or ’fail‘) by
comparing expected to
actual outcomes

● ● ● ● ● ● ● ● ● ●

B4.5 Use a variety of
methods to debug
programs (e.g., manual
code tracing, extra code
to output the state of
variables)

● ● ● ● ● ● ● ● ● ●

B4.6 Communicate
information about the
status of a project
(e.g., milestones, work
completed, work
outstanding) effectively
in writing throughout the
project

● ● ● ● ● ● ● ● ● ●

C. Computer
Environments and
Systems

Overall Expectations `

C3. Use a software
development
environment to write and
run computer programs

● ● ● ● ● ● ● ● ● ●

ON 1–12
Correlations Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 51

ICS3UICS3C

ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Condition
al Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 134–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

C. Computer
Environments and
Systems

C3.
The Software
Development
Environment

`

C3.1 Describe the
functions and features of
a software development
environment and use it to
write and run a computer
program

● ● ● ● ● ● ● ● ● ● ●

C3.3 Use Help
documentation as a
guide to designing and
writing programs

● ● ● ● ● ● ● ● ● ● ●

D. Computers
and Society

Overall Expectations `

D3. Explain key aspects
of the impact that
emerging technologies
have on society

● ●

D4. Describe
postsecondary education
and career prospects
related to computer
studies

● ●

D3.
Emerging Technologies `

D3.2 Describe some
emerging technologies
and their implications for,
and potential uses by,
various members of
society

●

D3.3 Describe some of
the solutions to complex
problems affecting
society that have been or
are being developed
through the use of
advanced computer
programming and
emerging technologies

●

Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 52

ICS3UICS3C

ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Condition
al Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 134–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

D. Computers
and Society

D4.
Post Secondary
Opportunities

`

D4.1 Research and
describe trends in
careers that require
computer skills, using
local and national
sources (e.g., local
newspaper, national
newspaper, career
websites)

●

D4.3 Research and
report on postsecondary
educational programs
leading to careers in the
field of information
systems and computer
science (e.g., institutions
offering relevant
programs, industry
certifications, courses of
study, entrance
requirements, length of
programs, costs).

●

D4.5 Describe the
Essential Skills and work
habits that are important
for success in computer
studies, as identified in
the Ontario Skills
Passport

●

Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ON 1–12
Correlations Grade 11

Grade 11

 53

Everyone Can Code
Adventures Teacher Guide

ICS3C — Intro to Computer Programming

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

A. Programming
Concepts and skills

Overall Expectations

A1. Demonstrate the ability to use
different data types in
expressions in simple computer
programs

● ● ● ● ● ● ●

A2. Demonstrate the ability to use
control structures and simple
algorithms in computer programs

● ● ● ● ● ● ●

A3. Use proper code maintenance
techniques and conventions
when creating computer
programs

● ● ● ● ● ● ●

A1.
Data Types and Expressions

A1.1 Use constants and variables,
including integers, floating points,
strings, and Boolean values,
correctly in computer programs

● ● ● ● ● ● ●

A1.2 Demonstrate the ability to
manipulate string data in a
computer program (e.g., swap
two characters, capitalize first
letter, extract a portion of an
address, count the occurrences
of a word or letter)

● ● ● ● ● ●

A1.3 Use assignment statements
correctly with both arithmetic and
string expressions in computer
programs (e.g., numStudents = 4
+ 2, name = “Devi”)

● ● ● ● ● ● ●

A1.4 Use Boolean operators (e.g.,
AND, OR, NOT), comparison
operators (i.e., equal to, not equal
to, greater than, less than, greater
than or equal to, less than or
equal to), arithmetic operators
(e.g., addition, subtraction,
multiplication, division,
exponentiation, parentheses), and
order of operations correctly

● ● ● ●

 54

ICS3UICS3C

ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

A. Programming
Concepts and skills

A2.
Control Structures
and Simple Algorithms

A2.1 Write programs that
incorporate user input,
processing, and screen output

● ● ● ● ● ● ●

A2.2 Use sequence, selection,
and repetition control structures
to create programming solutions

● ● ● ● ● ● ●

A2.3 Demonstrate the ability to
write algorithms with nested
structures

● ● ●

A3.
Code Maintenance

A3.1 Explain the difference
between syntax, logic, and run-
time errors in computer programs

● ● ● ● ● ● ● ●

A3.2 Demonstrate the ability to
correct syntax, logic, and run-
time errors in computer programs

● ● ● ● ● ● ●

A3.3 Use workplace and
professional conventions (e.g.,
naming, indenting, commenting)
correctly to write programs and
internal documentation

● ● ● ● ● ● ●

A3.4 Demonstrate the ability to
interpret error messages
displayed by programming tools
(e.g., compiler, debugging tool),
at different times during the
software development process
(e.g., writing, compilation, testing)

● ● ● ● ● ● ●

Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 55

ICS3UICS3C

ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

B. Software
Development

Overall
Expectations

B1. Use a variety of problem solving
strategies to solve different types of
problems

● ● ● ● ● ● ●

B2. Design software solutions to
meet a variety of challenges, using a
set of standards

● ● ● ● ● ● ●

B3. Design simple algorithms
according to specifications ● ● ● ● ● ● ●

B.1 Problem-solving
Strategies

B1.1 Use various problem-solving
strategies (e.g., divide and conquer,
working backwards, process
analysis, examples, extreme cases,
tables and charts, trial and error) to
solve programming problems

● ● ● ● ● ● ●

B1.2 Use the input-process-output
model to solve programming
problems

● ● ● ● ● ● ●

B.2 Designing
Software Solutions

B2.1 Design a simple program from a
program template or skeleton (e.g.,
teacher-supplied skeleton, Help
facility code snippet)

● ● ● ● ● ● ●

B2.2 Use appropriate vocabulary and
mode of expression (i.e., written,
oral, diagrammatic) to describe
alternative program designs and to
explain the structure of a program

● ● ● ● ● ● ●

B2.3 Write subprograms (e.g.,
functions, procedures) that perform
one well-defined task and use
parameter passing and appropriate
variable scope (e.g., local, global)

● ● ● ● ● ● ●

B2.4 Use industry-standard
programming tools (e.g., structure
chart, flow chart, UML [Unified
Modeling Language], data flow
diagram, pseudocode) to represent
the structure and components of a
computer program

● ● ● ● ● ● ●

B2.5. Design user-friendly software
interfaces (e.g., prompts, messages,
screens, forms)

●

Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 56

ICS3UICS3C

ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

B. Software
Development

B3.
Designing Simple Algorithms

B3.1 Use simple algorithms (e.g.,
validate entered data, count,
accumulate, use random
numbers) to design a program
according to specifications

● ● ● ● ● ● ●

B3.2 Solve problems (e.g.,
calculation of gross pay; fuel
consumption on a car trip;
average of students’ marks;
temperature at a given altitude,
using the environmental lapse
rate) by applying mathematical
equations or formulas in an
algorithm

● ● ● ● ● ● ●

B4.
The Software
Development Life Cycle

B4.2 Use a variety of techniques
(e.g., dialogue, questionnaires,
surveys, research) to clarify
program specifications

● ● ● ● ● ● ● ●

B4.4 Use a test plan to test
programs (i.e., identify test
scenarios, identify suitable input
data, calculate expected
outcomes, record actual
outcomes, and conclude ’pass‘ or
’fail‘) by comparing expected to
actual outcomes

● ● ● ● ● ● ●

B4.5 Use a variety of methods to
debug programs (e.g., manual
code tracing, extra code to output
the state of variables)

● ● ● ● ● ● ●

B4.6 Communicate information
about the status of a project (e.g.,
milestones, work completed, work
outstanding) effectively in writing
throughout the project

● ● ● ● ● ● ●

Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 57

ICS3UICS3C

ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

C. Computer Environments
and Systems

Overall Expectations

C3. Use a software development
environment to write and run
computer programs

● ● ● ● ● ● ●

C3.
The Software Development
Environment

C3.1 Describe the functions and
features of a software
development environment and
use it to write and run a computer
program

● ● ● ● ● ● ● ●

C3.3 Use Help documentation as
a guide to designing and writing
programs

● ● ● ● ● ● ● ●

D. Computers
and Society

Overall Expectations

D2. Describe and apply
procedures for safe computing to
safeguard computer users and
their data

● ●

D3. Explain key aspects of the
impact that emerging
technologies have on society

● ● ●

D4. Describe postsecondary
education and career prospects
related to computer studies

● ● ●

D2.
Safe Computing

D2.3 Describe procedures to
safeguard data and programs
from malware (e.g., viruses,
spyware, adware)

● ●

Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 58

ICS3UICS3C

ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

D. Software
Development

D3.
Emerging Technologies

D3.1 Explain how emerging
technologies can affect personal
rights and privacy (eg video
surveillance, cyberbullying,
identity theft)

● ● ●

D3.2 Describe some emerging
technologies and their
implications for, and potential
uses by, various members of
society

● ●

D3.3 Describe some of the
solutions to complex problems
affecting society that have been
or are being developed through
the use of advanced computer
programming and emerging
technologies (e.g., monitoring and
regulating electrical supply and
demand; using facial recognition
programs to verify the identity of
persons entering a country;
analysing criminal activity by
overlaying crime data on satellite
imagery; analysing large-scale
meteorological data to predict
catastrophic storms)

● ●

D4.
Post Secondary Opportunities

D4.1 Research and describe
trends in careers that require
computer skills, using local and
national sources (e.g., local
newspaper, national newspaper,
career websites)

● ● ●

D4.3 Research and report on
postsecondary educational
programs leading to careers in the
field of information systems and
computer science (e.g.,
institutions offering relevant
programs, industry certifications,
courses of study, entrance
requirements, length of programs,
costs)

D4.5 Describe the Essential Skills
and work habits that are
important for success in
computer studies, as identified in
the Ontario Skills Passport

●

Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ON 1–12
Correlations

Grade 11

 59

Develop in Swift
Explorations Teacher Guide

ICS3C — Intro to Computer Programming

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

A. Programming
Concepts and skills

Overall Expectations

A1. Demonstrate the ability to use
different data types in
expressions in simple computer
programs

● ● ● ●

A2. Demonstrate the ability to use
control structures and simple
algorithms in computer programs

● ● ● ●

A3. Use proper code maintenance
techniques and conventions
when creating computer
programs

● ● ● ●

A1.
Data Types and Expressions

A1.1 Use constants and variables,
including integers, floating points,
strings, and Boolean values,
correctly in computer programs

● ● ● ●

A1.2 Demonstrate the ability to
manipulate string data in a
computer program (e.g., swap
two characters, capitalize first
letter, extract a portion of an
address, count the occurrences
of a word or letter)

● ● ● ●

A1.3 Use assignment statements
correctly with both arithmetic and
string expressions in computer
programs (e.g., numStudents = 4
+ 2, name = “Devi”)

● ● ● ●

A1.4 Use Boolean operators (e.g.,
AND, OR, NOT), comparison
operators (i.e., equal to, not equal
to, greater than, less than, greater
than or equal to, less than or
equal to), arithmetic operators
(e.g., addition, subtraction,
multiplication, division,
exponentiation, parentheses), and
order of operations correctly

● ● ●

Grade 11

 60
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

A. Programming
Concepts and skills

A2.
Control Structures and
Simple Algorithms

A2.1 Write programs that
incorporate user input,
processing, and screen output

● ● ● ●

A2.2 Use sequence, selection,
and repetition control structures
to create programming solutions

● ● ● ●

A2.3 Demonstrate the ability to
write algorithms with nested
structures

● ● ● ●

A3.
Code Maintenance

A3.1 Explain the difference
between syntax, logic, and run-
time errors in computer programs

● ● ● ● ● ● ● ●

A3.2 Demonstrate the ability to
correct syntax, logic, and run-
time errors in computer programs

● ● ● ●

A3.3 Use workplace and
professional conventions (e.g.,
naming, indenting, commenting)
correctly to write programs and
internal documentation

● ● ● ●

A3.4 Demonstrate the ability to
interpret error messages
displayed by programming tools
(e.g., compiler, debugging tool),
at different times during the
software development process
(e.g., writing, compilation, testing)

● ● ● ●

B.Software Development

Overall
Expectations

B1. Use a variety of problem
solving strategies to solve
different types of problems

● ● ● ●

B2. Design software solutions to
meet a variety of challenges,
using a set of standards

● ● ● ●

B3. Design simple algorithms
according to specifications ● ● ● ●

B4. Apply a software
development lifecycle model to a
software development project

● ● ● ●

Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS3UICS3C

 61
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp.483–702

B. Software
Development

B1.
Problem–solving Strategies

B1.1 Use various problem-solving
strategies (e.g., divide and
conquer, working backwards,
process analysis, examples,
extreme cases, tables and charts,
trial and error) to solve
programming problems

● ● ● ●

B1.2 Use the input-process-
output model to solve
programming problems

● ● ● ●

B2.
Designing Software Solutions

B2.1 Design a simple program
from a program template or
skeleton (e.g., teacher-supplied
skeleton, Help facility code
snippet)

● ● ● ●

B2.2 Use appropriate vocabulary
and mode of expression (i.e.,
written, oral, diagrammatic) to
describe alternative program
designs and to explain the
structure of a program

● ● ● ● ● ● ● ●

B2.3 Write subprograms (e.g.,
functions, procedures) that
perform one well-defined task
and use parameter passing and
appropriate variable scope (e.g.,
local, global)

● ● ● ●

B2.4 Use industry-standard
programming tools (e.g., structure
chart, flow chart, UML [Unified
Modeling Language], data flow
diagram, pseudocode) to
represent the structure and
components of a computer
program

● ● ● ●

B2.5 Design user-friendly
software interfaces (e.g.,
prompts, messages, screens,
forms)

● ● ● ●

Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS3UICS3C

Grade 11 62
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

B. Software
Development

B3.
Designing Simple Algorithms

B3.1 Use simple algorithms (e.g.,
validate entered data, count,
accumulate, use random
numbers) to design a program
according to specifications

● ● ● ●

B3.2 Solve problems
(e.g., calculation of gross pay;
fuel consumption on a car trip;
average of students’ marks;
temperature at a given altitude,
using the environmental lapse
rate) by applying mathematical
equations or formulas in an
algorithm

● ● ● ●

B4.
The Software Development
Life Cycle

B4.1 Describe the phases
(i.e., problem definition, analysis,
design, writing code, testing,
implementation, maintenance),
milestones (e.g., date of
completion of program
specification), and products
(e.g., specification, flow chart,
program, documentation, bug
reports) of a software
development life cycle

● ● ● ●

B4.2 Use a variety of techniques
(e.g., dialogue, questionnaires,
surveys, research) to clarify
program specifications

● ● ● ●

B4.4 Use a test plan to test
programs (i.e., identify test
scenarios, identify suitable input
data, calculate expected
outcomes, record actual
outcomes, and conclude ’pass‘ or
’fail‘) by comparing expected to
actual outcomes

● ● ● ● ● ● ● ●

B4.5 Use a variety of methods to
debug programs (e.g., manual
code tracing, extra code to output
the state of variables)

● ● ● ●

B4.6 Communicate information
about the status of a project (e.g.,
milestones, work completed, work
outstanding) effectively in writing
throughout the project

● ● ● ●

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS3UICS3C

Grade 11 63
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

C. Computer Environments
and Systems

Overall Expectations

C3. Use a software development
environment to write and run
computer programs

● ● ● ●

C3.
The Software Development
Environment

C3.1 Describe the functions and
features of a software
development environment and
use it to write and run a computer
program

● ● ● ● ● ● ● ●

C3.3 Use Help documentation as
a guide to designing and writing
programs

● ● ● ● ● ● ● ●

D. Computers
and Society

Overall Expectations

D2. Describe and apply
procedures for safe computing to
safeguard computer users and
their data

● ● ● ●

D3. Explain key aspects of the
impact that emerging
technologies have on society

● ● ●

D4. Describe postsecondary
education and career prospects
related to computer studies

D2.
Safe Computing

D2.3 Describe procedures to
safeguard data and programs
from malware (e.g., viruses,
spyware, adware)

● ● ● ●

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS3UICS3C

 64
ON 1–12
Correlations Grade 11

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

D. Computers
and Society

D3.
Emerging Technologies

D3.1 Explain how emerging
technologies can affect personal
rights and privacy (e.g., video
surveillance, cyberbullying,
identity theft)

● ● ●

D3.2 Describe some emerging
technologies and their
implications for, and potential
uses by, various members of
society

● ● ●

D3.3 Describe some of the
solutions to complex problems
affecting society that have been
or are being developed through
the use of advanced computer
programming and emerging
technologies (e.g., monitoring and
regulating electrical supply and
demand; using facial recognition
programs to verify the identity of
persons entering a country;
analysing criminal activity by
overlaying crime data on satellite
imagery; analysing large-scale
meteorological data to predict
catastrophic storms)

● ●

D4.
Post Secondary Opportunities

D4.1 Research and describe
trends in careers that require
computer skills, using local and
national sources (e.g., local
newspaper, national newspaper,
career websites)

● ● ●

D4.3 Research and report on
postsecondary educational
programs leading to careers in the
field of information systems and
computer science (e.g.,
institutions offering relevant
programs, industry certifications,
courses of study, entrance
requirements, length of programs,
costs)

●

D4.5 Describe the Essential Skills
and work habits that are
important for success in
computer studies, as identified in
the Ontario Skills Passport

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS3UICS3C

ON 1–12
Correlations Grade 11

Grade 11

 65

Everyone Can Code
Puzzles Teacher Guide

ICS3U — Intro to Computer Science

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

A. Programming
Concepts and Skills

Overall Expectations

A1. Demonstrate the
ability to use different
data types, including one-
dimensional arrays, in
computer programs

● ● ● ● ● ● ● ● ● ●

A2. Demonstrate the
ability to use control
structures and simple
algorithms in computer
programs

● ● ● ● ● ● ● ● ● ●

A3. Demonstrate the
ability to use
subprograms within
computer programs

● ● ● ● ● ● ● ● ●

A4. Use proper code
maintenance techniques
and conventions when
creating computer
programs

● ● ● ● ● ● ● ● ● ●

A1.
Data Types and
Expressions

A1.1 Use constants and
variables, including
integers, floating points,
strings, and Boolean
values, correctly in
computer programs

● ● ● ● ● ● ● ● ● ●

A1.3 Use assignment
statements correctly with
both arithmetic and string
expressions in computer
programs

● ● ● ● ● ● ● ●

 66

ICS3UICS3C

ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

A. Programming
Concepts and skills

A1.
Data Types and
Expressions

A1.4 Demonstrate the
ability to use Boolean
operators (e.g., AND,
OR, NOT), comparison
operators (i.e., equal to,
not equal to, greater
than, less than, greater
than or equal to, less
than or equal to),
arithmetic operators
(e.g., addition,
subtraction,
multiplication, division,
exponentiation,
parentheses), and order
of operations correctly in
computer programs

● ● ● ● ● ●

A1.5 Describe the
structure of one-
dimensional arrays and
related concepts,
including elements,
indexes, and bounds

●

A1.6 Write programs that
declare, initialize, modify,
and access one-
dimensional arrays

●

A2.
Control Structures and
Simple Algorithms

A2.1 Write programs that
incorporate user input,
processing, and screen
output

● ● ● ● ● ● ● ● ● ●

A2.2 Use sequence,
selection, and repetition
control structures to
create programming
solutions

● ● ● ● ● ● ● ● ● ●

A2.3 Write algorithms
with nested structures
(e.g., to count elements
in an array, calculate a
total, find highest or
lowest value, or perform
a linear search)

● ● ● ● ●

Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 67
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For
Loops

pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

A. Programming
Concepts and skills

A3.
Subprograms

A3.1 Demonstrate the
ability to use existing
subprograms (e.g.,
random number
generator, substring,
absolute value) within
computer programs

● ● ● ● ● ● ● ● ●

A3.2 Write subprograms
(e.g., functions,
procedures) that use
parameter passing and
appropriate variable
scope (e.g., local, global),
to perform tasks within
programs

● ● ● ● ● ● ● ● ●

A4.
Code Maintenance

A4.1 Demonstrate the
ability to identify and
correct syntax, logic, and
run-time errors in
computer programs

● ● ● ● ● ● ● ● ● ●

A4.2 Use workplace and
professional conventions
(e.g., naming, indenting,
commenting) correctly to
write programs and
internal documentation

● ● ● ● ● ● ● ● ● ●

A4.3 Demonstrate the
ability to interpret error
messages displayed by
programming tools (e.g.,
compiler, debugging tool),
at different times during
the software development
process (e.g., writing,
compilation, testing)

● ● ● ● ● ● ● ● ● ●

A4.4 Use a tracing
technique to understand
program flow and to
identify and correct logic
and run-time errors in
computer programs

● ● ● ● ● ● ● ● ● ●

A4.5 Demonstrate the
ability to validate a
program using a full range
of test cases

● ● ● ● ● ● ● ● ● ●

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 68
ON 1–1
Correlations

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For
Loops

pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

B. Software
Development

Overall
Expectations

B1. Use a variety of
problem solving
strategies to solve
different types of
problems independently
or as part of as team

● ● ● ● ● ● ● ● ● ●

B2. Design software
solutions to meet a
variety of challenges

● ● ● ● ● ● ● ● ● ●

B3. Design algorithms
according to
specifications

● ● ● ● ● ● ● ● ● ●

B4. Apply a software
development lifecycle
model to a software
development project

● ● ● ● ● ● ● ● ● ●

B1.
Problem-solving
Strategies

B1.1 Use various problem-
solving strategies (e.g.,
stepwise refinement,
divide and conquer,
working backwards,
examples, extreme cases,
tables and charts, trial
and error) when solving
different types of
problems

● ● ● ● ● ● ● ● ● ●

B1.2 demonstrate the
ability to solve problems
independently and as
part of a team

● ● ● ● ● ● ● ● ● ●

B1.3 Use the input-
process-output model to
solve problems

● ● ● ● ● ● ● ● ● ●

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 69
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

B. Software
Development

B2.
Designing Software
Solutions

B2.1 Design programs
from a program template
or skeleton (e.g., teacher-
supplied skeleton, Help
facility code snippet)

● ● ● ● ● ● ● ● ● ●

B2.2 Use appropriate
vocabulary and mode of
expression (i.e., written,
oral, diagrammatic) to
describe alternative
program designs and to
explain the structure of a
program

● ● ● ● ● ● ● ● ● ● ●

B2.3 Apply the principle
of modularity to design
reusable code (e.g.,
subprograms, classes) in
computer programs

● ● ● ● ● ● ● ● ●

B2.4 Represent the
structure and
components of a program
using industry-standard
programming tools (e.g.,
structure chart, flow
chart, UML [Unified
Modeling Language],
data flow diagram,
pseudocode)

● ● ● ● ● ● ● ● ● ●

B3.
Designing Algorithms

B3.1 Design simple
algorithms (e.g., add data
to a sorted array, delete a
datum from the middle of
an array) according to
specifications

● ● ● ● ● ● ● ● ● ●

B3.2 Solve common
problems (e.g.,
calculation of
hypotenuse,
determination of primes,
calculation of area and
circumference) by
applying mathematical
equations or formulas in
an algorithm

● ● ● ● ● ● ● ●

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 70
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

B. Software
Development

B4.
The Software
Development Life Cycle

B4.2 Use a variety of
techniques (e.g.,
dialogue, questionnaires,
surveys, research) to
clarify program
specifications;

● ● ● ● ● ● ● ● ● ● ●

B4.4 Use a test plan to
test programs (i.e.,
identify test scenarios,
identify suitable input
data, calculate expected
outcomes, record actual
outcomes, and conclude
’pass‘ or ’fail‘) by
comparing expected to
actual outcomes

● ● ● ● ● ● ● ● ● ●

B4.5 Use a variety of
methods to debug
programs (e.g., manual
code tracing, extra code
to output the state of
variables)

● ● ● ● ● ● ● ● ● ●

B4.6 Communicate
information about the
status of a project (e.g.,
milestones, work
completed, work
outstanding) effectively in
writing throughout the
project

● ● ● ● ● ● ● ● ● ●

C. Computer
Environments
and Systems

Overall
Expectations

C3. Use a software
development
environment to write and
run computer programs

● ● ● ● ● ● ● ● ● ●

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 71
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

C. Computer
Environments
and Systems

C3.
The Software
Development
Environment

C3.1 Demonstrate an
understanding of an
integrated software
development
environment and its main
components (e.g., source
code editor, compiler,
debugger)

● ● ● ● ● ● ● ● ● ●

C3.2 Work independently,
using support
documentation (e.g., IDE
Help, tutorials, websites,
user manuals), to design
and write functioning
computer programs

● ● ● ● ● ● ● ● ● ● ●

C3.3 Explain the
difference between
source code and machine
code

C3.4 Explain the
difference between an
interpreter and a compiler

D. Topics in
Computer Science

Overall
Expectations

D2. Demonstrate an
understanding of
emerging areas of
computer science
research

● ●

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 72
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. i–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

D. Topics in
Computer Science

D2.
Exploring Computer
Science

D2.1 Demonstrate an
understanding of
emerging areas of
research in computer
science (e.g.,
cryptography, parallel
processing, distributed
computing, data mining,
artificial intelligence,
robotics, computer vision,
image processing,
human–computer
interaction, security,
geographic information
systems [GIS])

●

D2. Demonstrate an
understanding of
emerging areas of
computer science
research

●

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Grade 11
ON 1–12
Correlations

Grade 11

 73

Everyone Can Code
Adventures Teacher Guide

ICS3U — Intro to Computer Science

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

A. Programming
Concepts and skills

Overall Expectations

A1. Demonstrate the ability to use
different data types types,
including one-dimensional arrays,
in computer programs

● ● ● ● ● ● ●

A2. Demonstrate the ability to use
control structures and simple
algorithms in computer programs

● ● ● ● ● ● ●

A3. Demonstrate the ability to use
subprograms within computer
programs

● ● ● ● ● ● ●

A4. Use proper code
maintenance techniques and
conventions when creating
computer programs

● ● ● ● ● ● ●

A1.
Data Types and Expressions

A1.1 Use constants and variables,
including integers, floating points,
strings, and Boolean values,
correctly in computer programs

● ● ● ● ● ● ●

A1.3 Use assignment statements
correctly with both arithmetic and
string expressions in computer
programs

● ● ● ● ● ● ●

A1.4 Demonstrate the ability to
use Boolean operators (e.g., AND,
OR, NOT), comparison operators
(i.e., equal to, not equal to, greater
than, less than, greater than or
equal to, less than or equal to),
arithmetic operators (e.g.,
addition, subtraction,
multiplication, division,
exponentiation, parentheses), and
order of operations correctly in
computer programs

● ● ● ●

A1.5 Describe the structure of
one-dimensional arrays and
related concepts, including
elements, indexes, and bounds

● ● ● ● ● ●

A1.6 Write programs that declare,
initialize, modify, and access one-
dimensional arrays

● ● ● ● ● ●

 74

ICS3UICS3C

ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

A. Programming
Concepts and skills

A2.
Control Structures
and Simple Algorithms

A2.1 Write programs that
incorporate user input,
processing, and screen output

● ● ● ● ● ● ●

A2.2 Use sequence, selection,
and repetition control structures
to create programming solutions

● ● ● ● ● ● ●

A2.3 Write subprograms (e.g.,
functions, procedures) that use
parameter passing and
appropriate variable scope (e.g.,
local, global), to perform tasks
within programs

● ● ● ● ● ● ●

A3.
Subprograms

A3.1 Demonstrate the ability to
use existing subprograms (e.g.,
random number generator,
substring, absolute value) within
computer programs

● ● ● ● ● ● ●

A3.2 Write subprograms (e.g.,
functions, procedures) that use
parameter passing and
appropriate variable scope (e.g.,
local, global), to perform tasks
within programs

● ● ● ● ● ● ●

A4.
Code Maintenance

A4.1 Demonstrate the ability to
identify and correct syntax, logic,
and run-time errors in computer
programs

● ● ● ● ● ● ●

A4.2 Use workplace and
professional conventions (e.g.,
naming, indenting, commenting)
correctly to write programs and
internal documentation

● ● ● ● ● ● ●

A4.3 Demonstrate the ability to
interpret error messages
displayed by programming tools
(e.g., compiler, debugging tool),
at different times during the
software development process
(e.g., writing, compilation, testing)

● ● ● ● ● ● ●

A4.4 Use a tracing technique to
understand program flow and to
identify and correct logic and run-
time errors in computer programs

● ● ● ● ● ● ●

Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 75
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

A. Programming
Concepts and skills

A4.
Code Maintenance

A4.5 Demonstrate the ability to
validate a program using a full
range of test cases

● ● ● ● ● ● ●

B. Software
Development

Overall
Expectations

B1. Use a variety of problem
solving strategies to solve
different types of problems
independently or as part of as
team

● ● ● ● ● ● ●

B2. Design software solutions to
meet a variety of challenges ● ● ● ● ● ● ●

B3. Design algorithms according
to specifications ● ● ● ● ● ● ●

B4. Apply a software
development life-cycle model to a
software development project

●

B1.
Problem-solving Strategies

B1.1 Use various problem-solving
strategies (e.g., stepwise
refinement, divide and conquer,
working backwards, examples,
extreme cases, tables and charts,
trial and error) when solving
different types of problems

● ● ● ● ● ● ●

B1.2 Demonstrate the ability to
solve problems independently
and as part of a team

● ● ● ● ● ● ●

B1.3 Use the input-process-
output model to solve problems ● ● ● ● ● ● ●

B2.
Designing Software Solutions

B2.1 Design programs from a
program template or skeleton
(e.g., teacher-supplied skeleton,
Help facility code snippet)

● ● ● ● ● ● ●

B2.2 Use appropriate vocabulary
and mode of expression (i.e.,
written, oral, diagrammatic) to
describe alternative program
designs and to explain the
structure of a program

● ● ● ● ● ● ● ●

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 76
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

B. Software
Development

B2.
Designing Software Solutions

B2.3 Apply the principle of
modularity to design reusable
code (e.g., subprograms, classes)
in computer programs

● ● ● ● ● ● ●

B2.4 Represent the structure and
components of a program using
industry-standard programming
tools (e.g., structure chart, flow
chart, UML [Unified Modeling
Language], data flow diagram,
pseudocode)

● ● ● ● ● ● ●

B2.5 Design user-friendly
software interfaces (e.g.,
prompts, messages, screens,
forms)

●

B3.
Designing Algorithms

B3.1 Design simple algorithms
(e.g., add data to a sorted array,
delete a datum from the middle of
an array) according to
specifications

● ● ● ● ● ●

B3.2 Solve common problems
(e.g., calculation of hypotenuse,
determination of primes,
calculation of area and
circumference) by applying
mathematical equations or
formulas in an algorithm

● ● ● ● ● ● ●

B4.
The Software
Development Life Cycle

B4.1 Describe the phases (i.e.,
problem definition, analysis,
design, writing code, testing,
implementation, maintenance),
milestones (e.g., date of
completion of program
specification), and products (e.g.,
specification, flow chart, program,
documentation, bug reports) of a
software development life cycle

●

B4.2 Use a variety of techniques
(e.g., dialogue, questionnaires,
surveys, research) to clarify
program specifications

● ● ● ● ● ● ● ●

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 77
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

Software
Development

B4.
The Software
Development Life Cycle

B4.4 Use a test plan to test
programs (i.e., identify test
scenarios, identify suitable input
data, calculate expected
outcomes, record actual
outcomes, and conclude ’pass‘ or
’fail‘) by comparing expected to
actual outcomes

● ● ● ● ● ● ●

B4.5 Use a variety of methods to
debug programs (e.g., manual
code tracing, extra code to output
the state of variables)

● ● ● ● ● ● ●

B4.6 Communicate information
about the status of a project (e.g.,
milestones, work completed, work
outstanding) effectively in writing
throughout the project

● ● ● ● ● ● ●

C. Computer Environments
and Systems

Overall
Expectations

C3. Use a software development
environment to write and run
computer programs

● ● ● ● ● ● ●

C3.
The Software
Development Environment

C3.1 Demonstrate an
understanding of an integrated
software development
environment and its main
components (e.g., source code
editor, compiler, debugger)

● ● ● ● ● ● ●

C3.2 Work independently, using
support documentation (e.g., IDE
Help, tutorials, websites, user
manuals), to design and write
functioning computer programs

● ● ● ● ● ● ● ●

C3.3 Explain the difference
between source code and
machine code

C3.4 Explain the difference
between an interpreter and a
compiler

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 78
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

D. Topics in
Computer Science

Overall
Expectations

D2. Demonstrate an
understanding of emerging areas
of computer science research

●

D3. Describe postsecondary
education and career prospects
related to computer studies

●

D2. Exploring
Computer Science

D2.1 Demonstrate an
understanding of emerging areas
of research in computer science
(e.g., cryptography, parallel
processing, distributed
computing, data mining, artificial
intelligence, robotics, computer
vision, image processing, human–
computer interaction, security,
geographic information systems
[GIS])

D2.2 Demonstrate an
understanding of an area of
collaborative research between
computer science and another
field (e.g., bioinformatics,
geology, economics, linguistics,
health informatics, climatology,
sociology, art)

D2.3 Report on an area of
research related to computer
science, using an appropriate
format (e.g., website,
presentation software, video)

D3. Postsecondary
Opportunities

D3.1 Research and describe
career choices and trends in
computer science, at the local,
national, and international levels

● ● ●

D3.2 Identify and report on
opportunities for experiential
learning (e.g., co-op programs,
job shadowing, career fairs) in the
field of computer science

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 79
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

D. Topics in
Computer Science

D3. Postsecondary
Opportunities

D3.3 Research and report on
postsecondary educational
programs leading to careers in
information systems and
computer science (e.g.,
institutions offering relevant
programs, industry certifications,
courses of study, entrance
requirements, length of programs,
costs);

D3.4 Identify groups and
programs that are available to
support students who are
interested in pursuing non-
traditional career choices related
to information systems and
computer science (e.g.,
mentoring programs, virtual
networking/support groups,
specialized postsecondary
programs, relevant trade/industry
associations)

D3.5 Describe the Essential Skills
and work habits that are
important for success in
computer studies, as identified in
the Ontario Skills Passport

●

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ON 1–12
Correlations Grade 11

Grade 11

 80

Develop in Swift
Explorations Teacher Guide

ICS3U — Intro to Computer Science

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

A. Programming
Concepts and skills

Overall Expectations

A1. Demonstrate the ability to use
different data types types,
including one-dimensional arrays,
in computer programs

● ● ● ●

A2. Demonstrate the ability to use
control structures and simple
algorithms in computer programs

● ● ● ●

A3. Demonstrate the ability to use
subprograms within computer
programs

● ● ● ●

A4. Use proper code
maintenance techniques and
conventions when creating
computer programs

● ● ● ●

A1.
Data Types and Expressions

A1.1 Use constants and variables,
including integers, floating points,
strings, and Boolean values,
correctly in computer programs

● ● ● ●

A1.3 Use assignment statements
correctly with both arithmetic and
string expressions in computer
programs

● ● ● ●

A1.4 Demonstrate the ability to
use Boolean operators (e.g., AND,
OR, NOT), comparison operators
(i.e., equal to, not equal to, greater
than, less than, greater than or
equal to, less than or equal to),
arithmetic operators (e.g.,
addition, subtraction,
multiplication, division,
exponentiation, parentheses), and
order of operations correctly in
computer programs

● ● ● ●

A1.5 Describe the structure of
one-dimensional arrays and
related concepts, including
elements, indexes, and bounds

● ● ●

A1.6 Write programs that declare,
initialize, modify, and access one-
dimensional arrays

● ● ●

 81

ICS3UICS3C

ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

A. Programming
Concepts and skills

A2.
Control Structures
and Simple Algorithms

A2.1 Write programs that
incorporate user input,
processing, and screen output

● ● ● ●

A2.2 Use sequence, selection,
and repetition control structures
to create programming solutions

● ● ● ●

A2.3 Write subprograms (e.g.,
functions, procedures) that use
parameter passing and
appropriate variable scope (e.g.,
local, global), to perform tasks
within programs

● ● ● ●

A3.
Subprograms

A3.1 Demonstrate the ability to
use existing subprograms (e.g.,
random number generator,
substring, absolute value) within
computer programs

● ● ● ●

A3.2 Write subprograms (e.g.,
functions, procedures) that use
parameter passing and
appropriate variable scope (e.g.,
local, global), to perform tasks
within programs

● ● ● ●

A4.
Code Maintenance

A4.1 Demonstrate the ability to
identify and correct syntax, logic,
and run-time errors in computer
programs

● ● ● ●

A4.2 Use workplace and
professional conventions (e.g.,
naming, indenting, commenting)
correctly to write programs and
internal documentation

● ● ● ●

A4.3 Demonstrate the ability to
interpret error messages
displayed by programming tools
(e.g., compiler, debugging tool),
at different times during the
software development process
(e.g., writing, compilation, testing)

● ● ● ●

Grade 11

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 82
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

A. Programming
Concepts and skills

A4.
Code Maintenance

A4.4 Use a tracing technique to
understand program flow and to
identify and correct logic and run-
time errors in computer programs

● ● ● ●

A4.5 Demonstrate the ability to
validate a program using a full
range of test cases

● ● ● ●

B. Software
Development

Overall
Expectations

B1. Use a variety of problem
solving strategies to solve
different types of problems
independently or as part of as
team

● ● ● ●

B2. Design software solutions to
meet a variety of challenges ● ● ● ●

B3. Design algorithms according
to specifications ● ● ● ●

B4. Apply a software
development lifecycle model to a
software development project

● ● ● ●

B1.
Problem-solving Strategies

B1.1 Use various problem-solving
strategies (e.g., stepwise
refinement, divide and conquer,
working backwards, examples,
extreme cases, tables and charts,
trial and error) when solving
different types of problems

● ● ● ●

B1.2 Demonstrate the ability to
solve problems independently
and as part of a team

● ● ● ●

B1.3 Use the input-process-
output model to solve problems ● ● ● ●

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 83
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

B. Software
Development

B2.
Designing Software Solutions

B2.1 Design programs from a
program template or skeleton
(e.g., teacher-supplied skeleton,
Help facility code snippet)

● ● ● ●

B2.2 Use appropriate vocabulary
and mode of expression (i.e.,
written, oral, diagrammatic) to
describe alternative program
designs and to explain the
structure of a program

● ● ● ● ● ● ● ●

B2.3 Apply the principle of
modularity to design reusable
code (e.g., subprograms, classes)
in computer programs

● ● ● ●

B2.4 Represent the structure and
components of a program using
industry-standard programming
tools (e.g., structure chart, flow
chart, UML [Unified Modeling
Language], data flow diagram,
pseudocode)

● ● ● ●

B2.5 Design user-friendly
software interfaces (e.g.,
prompts, messages, screens,
forms)

● ● ● ●

B3.
Designing Algorithms

B3.1 Design simple algorithms
(e.g., add data to a sorted array,
delete a datum from the middle of
an array) according to
specifications

● ● ● ●

B3.2 Solve common problems
(e.g., calculation of hypotenuse,
determination of primes,
calculation of area and
circumference) by applying
mathematical equations or
formulas in an algorithm

● ● ● ●

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 84
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

B. Software
Development

B4.
The Software
Development Life Cycle

B4.1 Describe the phases (i.e.,
problem definition, analysis,
design, writing code, testing,
implementation, maintenance),
milestones (e.g., date of
completion of program
specification), and products (e.g.,
specification, flow chart, program,
documentation, bug reports) of a
software development life cycle

● ● ● ● ● ● ● ●

B4.2 Use a variety of techniques
(e.g., dialogue, questionnaires,
surveys, research) to clarify
program specifications

● ● ● ●

B4.4 Use a test plan to test
programs (i.e., identify test
scenarios, identify suitable input
data, calculate expected
outcomes, record actual
outcomes, and conclude ’pass‘ or
’fail‘) by comparing expected to
actual outcomes

● ● ● ●

B4.5 Use a variety of methods to
debug programs (e.g., manual
code tracing, extra code to output
the state of variables)

● ● ● ●

B4.6 Communicate information
about the status of a project (e.g.,
milestones, work completed, work
outstanding) effectively in writing
throughout the project

● ● ● ●

C. Computer Environments
and Systems

Overall
Expectations

C3. Use a software development
environment to write and run
computer programs

● ● ● ●

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 85
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

C. Computer Environments
and Systems

C3.
The Software
Development Environment

C3.1 Demonstrate an
understanding of an integrated
software development
environment and its main
components (e.g., source code
editor, compiler, debugger)

● ● ● ●

C3.2 Work independently, using
support documentation (e.g., IDE
Help, tutorials, websites, user
manuals), to design and write
functioning computer programs

● ● ● ● ● ● ● ●

C3.3 Explain the difference
between source code and
machine code

●

C3.4 Explain the difference
between an interpreter and a
compiler

● ● ●

D. Topics in
Computer Science

Overall
Expectations

D2. Demonstrate an
understanding of emerging areas
of computer science research

●

D3. Describe postsecondary
education and career prospects
related to computer studies

●

D2.
Exploring
Computer Science

D2.1 Demonstrate an
understanding of emerging areas
of research in computer science
(e.g., cryptography, parallel
processing, distributed
computing, data mining, artificial
intelligence, robotics, computer
vision, image processing, human–
computer interaction, security,
geographic information systems
[GIS])

● ● ● ●

Grade 11

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Grade 11 86
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

D. Topics in
Computer Science

D2.
Exploring
Computer Science

D2.2 Demonstrate an
understanding of an area of
collaborative research between
computer science and another
field (e.g., bioinformatics,
geology, economics, linguistics,
health informatics, climatology,
sociology, art)

● ●

D2.3 Report on an area of
research related to computer
science, using an appropriate
format (e.g., website,
presentation software, video)

● ● ● ● ● ● ●

D3.
Postsecondary
Opportunities

D3.1 Research and describe
career choices and trends in
computer science, at the local,
national, and international levels

D3.2 Identify and report on
opportunities for experiential
learning (e.g., co-op programs,
job shadowing, career fairs) in the
field of computer science

D3.3 Research and report on
postsecondary educational
programs leading to careers in
information systems and
computer science (e.g.,
institutions offering relevant
programs, industry certifications,
courses of study, entrance
requirements, length of programs,
costs);

●

D3.4 Identify groups and
programs that are available to
support students who are
interested in pursuing non-
traditional career choices related
to information systems and
computer science (e.g.,
mentoring programs, virtual
networking/support groups,
specialized postsecondary
programs, relevant trade/industry
associations)

●

D3.5 Describe the Essential Skills
and work habits that are
important for success in
computer studies, as identified in
the Ontario Skills Passport

ICS3UICS3C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Grade 12

 87
ON 1–12
Correlations Grade 12

Back to Contents

Back to Resources

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

46

97

104

ICS4C
Computer Programming

College Preparation

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

111

73

80

ICS4U
Intro to Computer Science

University Preparation

ON 1–12
Correlations

Grade 12

 88

Everyone Can Code
Puzzles Teacher Guide

ICS4C — Computer Programming

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

A. Programming
Concepts and skills

Overall
Expectations

A1. Use data structures in
the design and creation of
computer programs

●

A2. Demonstrate the
ability to use standard
algorithms in the design
and creation of computer
programs

● ● ● ● ● ● ● ● ● ●

A3. Demonstrate an
understanding of object-
oriented programming
concepts and practices in
the design and creation of
computer programs;

A4. Create clear and
accurate internal and
external documentation
to ensure the
maintainability of
computer software

● ● ● ● ● ● ● ● ● ●

A1.
Data Structures

A1.2 Use Boolean
operators (e.g., AND, OR,
NOT), comparison
operators (i.e., equal to,
not equal to, greater than,
less than, greater than or
equal to, less than or
equal to), arithmetic
operators (e.g., addition,
subtraction,
multiplication, division,
exponentiation,
parentheses), and order
of operations correctly in
programming

● ● ● ● ● ●

A1.3 Describe the
structure of one-
dimensional and two-
dimensional arrays and
related concepts
including elements,
indexes, and bounds

●

Grade 12

 89

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

A. Programming
Concepts and skills

A2.
Using Standard
Algorithms

A2.1 Demonstrate the
ability to manipulate
and convert data in a
computer program
(e.g., parse strings;
convert data types such
as numeric to string, and
string to numeric; convert
‘yes’ or ‘no’ to Boolean)

● ● ● ● ● ● ●

A2.3 Demonstrate the
ability to declare, initialize,
modify, and access one-
dimensional and two-
dimensional arrays and
elements within a
program

●

A2.4 Demonstrate the
ability to add, change, or
delete elements of an
array of objects in a
program

●

A2.5 Demonstrate the
ability to use search and
sort routines (e.g.,
stringindexOf (“cool”),
Arrayssort(intArray)) in a
program

●

A3.
Object-Oriented
Programming

A3.1 Explain the
importance of designing
reusable code in
computer programs

● ● ● ● ● ● ● ● ● ●

A3.2 Explain fundamental
object-oriented
programming concepts
(e.g., classes, objects,
methods)

A3.3 Apply the concepts
of scope and visibility for
variables, constants, and
methods when creating
classes in computer
programs

A3.4 Compare and
contrast object-oriented
and procedural
programming paradigms

Develop in Swift
Explorations Teacher Guide

Grade 12

 90
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

A. Programming
Concepts and skills

A4.
Code Maintenance

A4.1 Write maintainable
computer programs by
creating clear and
accurate internal
documentation that
provides in-depth
explanations of complex
blocks of code

● ● ● ● ● ● ● ● ● ●

A4.2 Create clear and
maintainable external
user documentation (e.g.,
Help file, how-to manual,
FAQ, installation
procedures, backup and
recovery procedures,
training materials) as part
of a complete software
development project

A4.3 Develop and
implement a formal
testing plan for a software
development project to
ensure program
correctness

B. Software
Development

Overall
Expectations

B1. Design standard
algorithms according to
specifications

● ● ● ● ● ● ● ● ● ●

B2. Design software
solutions using object-
oriented programming
concepts

B3. Design user-friendly
graphical user interfaces
(GUIs) that meet user
requirements

B4. Participate in a large
student-managed project,
using proper project
management tools and
techniques to manage the
process effectively

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 91
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

B. Software
Development

B2.
Designing Software
Solutions

B1.1 Design algorithms to
solve practical
mathematical problems
(e.g., amount of paint or
carpet needed, number of
shingles needed, energy
costs, amount of water
needed for an aquarium,
projection of Aboriginal
youth population growth)

B1.2 Design algorithms
that require precision and
accuracy when rounding
numbers (e.g., currency
calculations, amortization,
recipe volume changes)

B1.3 Design data
validation routines (e.g.,
capitalization; formatting
of postal codes,
telephone numbers, SINs,
and alphanumeric data;
length and range
checking)

B2.
Object-oriented
Software Solutions

B2.1 Demonstrate the
ability to create and use
instance methods (e.g.,
constructors, mutators,
accessors) in a computer
program

B2.2 Design a simple
base class to represent
objects or concepts in a
problem statement, using
program templates or
skeletons

B2.3 Write methods that
require parameter passing
in a computer program

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 92
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

B. Software
Development

B3.
Graphical User Interfaces

B3.1 Design graphical
user interfaces that
contain common controls
(e.g., buttons, labels, text
boxes)

B3.2 Design a user-
friendly graphical user
inter-face that helps to
improve user accessibility
(e.g., for multilingualism;
for those with limited
eyesight or colour vision
deficiency)

B3.3 Evaluate a user
interface for conformity
with a given accessibility
standard (e.g., Section
508 of the Rehabilitation
Act (US), W3C User
Interface Domain, or a
student or teacher-
created standard)

B3.4 Design responses to
user events in a graphical
user interface

B4.
Student-managed Project

B4.1 Describe the phases
of a model (e.g., waterfall,
iterative, XP [Extreme
Programming], RAD
[Rapid Application
Development]) of the
software development life
cycle

B4.2 Create a project plan
for a software
development project,
outlining the tasks at each
phase of the software
development life cycle

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 93
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

B. Software
Development

B4.
Student-managed Project

B4.3 Use project
management tools (e.g.,
Gantt chart, PERT chart)
and time management
tools (e.g., organizer,
calendar) to help develop
a software project

B4.4 Use industry-
standard programming
tools (e.g., UML [Unified
Modeling Language],
diagrams, structure
charts, flow charts,
pseudocode) to develop a
software project

● ● ● ● ● ● ● ● ● ●

C. Programming
Environment

Overall
Expectations

C1. demonstrate the
ability to use project
management tools to plan
and track activities for a
software development
project

● ● ● ● ● ● ● ● ● ●

C2. demonstrate the
ability to use software
development tools to
design and write a
computer program

● ● ● ● ● ● ● ● ● ●

C1.
Project Management
Tools

C1.1 Use software tools
(e.g., email, wikis, blogs,
task lists, bulletin boards,
spreadsheets, shared
calendars) to plan and
track activities during a
software development
project

● ● ● ● ● ● ● ● ● ●

C1.2 Communicate
information about project
status effectively in
writing throughout the
project

● ● ● ● ● ● ● ● ● ●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 94
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

C. Programming
Environment

C2.
Software Development
Tools

C2.1 Use the features of a
software development
environment to debug
programs and create
functioning computer
programs

● ● ● ● ● ● ● ● ● ●

C2.2 Work independently,
using the Help function,
to resolve syntax issues
while programming

● ● ● ● ● ● ● ● ● ●

C2.3 Work independently,
using reference materials
(e.g., code snippets,
sample programs, APIs,
tutorials), to design and
write functioning
computer programs

● ● ● ● ● ● ● ● ● ●

D. Computers
and Society

Overall
Expectations

D2. Demonstrate an
understanding of ethical
issues and practices
related to the use of
computers

D3. Investigate and report
on emerging computer
technologies and their
potential impact on
society and the economy

● ●

D4. Research and report
on the range of career
paths and lifelong
learning opportunities in
software development or
a computer-related field

● ●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 95
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

D. Computers
and Society

D2.
Ethical Practices

D2.1 Investigate and
describe an ethical issue
related to the use of
computers (e.g., piracy,
privacy, security,
phishing, spyware,
cyberbullying).

●

D2.2 Describe the
essential elements of a
code of ethics for
computer programmers,
and explain why there is a
need for such a code
(e.g., plagiarism,
backdoors, spyware,
unethical programming
practices).

D2.3 Outline and apply
strategies to encourage
ethical computing
practices at home, at
school, and at work.

D3.
Emerging Technologies

D3.1 Describe the
evolution of some
emerging programming
languages.

● ● ● ● ● ● ● ● ● ● ●

D3.2 Investigate and
report on innovations in
information technology
(e.g., webcasting, VoIP,
multiplayer online
gaming) and their
potential impact on
society and the economy.

●

D3.3 Describe
programming
requirements for a variety
of emerging technologies
(e.g., web programming,
smartphones, embedded
systems).

●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 96
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp. 70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

D. Computers
and Society

D4.
Computer-related
Careers

D4.1 Research and report
on the range of career
opportunities in software
development, including
duties, responsibilities,
qualifications, and
compensation

●

D4.2 Research and report
on opportunities for
lifelong learning in
software development or
a computer-related field

●

D4.3 Evaluate their own
development of Essential
Skills and work habits that
are important for success
in computer studies, as
identified in the Ontario
Skills Passport

●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

ON 1–12
Correlations

Grade 12

 97

Everyone Can Code
Adventures Teacher Guide

ICS4C — Computer Programming

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

A. Programming
Concepts and skills

Overall Expectations

A1. Use data structures in the
design and creation of computer
programs

● ● ● ● ● ●

A2. Demonstrate the ability to use
standard algorithms in the design
and creation of computer
programs

● ● ● ● ● ● ●

A3. Demonstrate an
understanding of object-oriented
programming concepts and
practices in the design and
creation of computer programs;

● ● ● ● ● ● ●

A4. Create clear and accurate
internal and external
documentation to ensure the
maintainability of computer
software

● ● ● ● ● ● ●

A1.
Data Structures

A1.1 Perform operations on data
types typically used in business
applications (e.g., express money
amounts as dollars and cents,
express dates and times in
various formats)

● ● ● ● ● ● ●

A1.2 Use Boolean operators (e.g.,
AND, OR, NOT), comparison
operators (i.e., equal to, not equal
to, greater than, less than, greater
than or equal to, less than or
equal to), arithmetic operators
(e.g., addition, subtraction,
multiplication, division,
exponentiation, parentheses), and
order of operations correctly in
programming

● ● ● ●

A1.3 Describe the structure of
one-dimensional and two-
dimensional arrays and related
concepts including elements,
indexes, and bounds

● ● ● ● ● ●

Grade 12

 98

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

ON 1–12
Correlations

Everyone Can Code
Adventures Teacher Guide

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

A. Programming
Concepts and skills

A2.
Using Standard Algorithms

A2.1 Demonstrate the ability to
manipulate and convert data in a
computer program (e.g., parse
strings; convert data types such
as numeric to string, and string to
numeric; convert ‘yes’ or ‘no’ to
Boolean)

● ● ● ● ● ● ●

A2.3 Demonstrate the ability to
declare, initialize, modify, and
access one-dimensional and two-
dimensional arrays and elements
within a program

● ● ● ● ● ●

A2.4 Demonstrate the ability to
add, change, or delete elements
of an array of objects in a
program

● ● ● ● ● ●

A2.5 Demonstrate the ability to
use search and sort routines (e.g.,
stringindexOf (“cool”),
Arrayssort(intArray)) in a program

● ●

A3.
Object-oriented Programming

A3.1 Explain the importance of
designing reusable code in
computer programs

● ● ● ● ● ● ●

A3.2 Explain fundamental object-
oriented programming concepts
(e.g., classes, objects, methods)

● ● ● ● ● ● ●

A3.3 Apply the concepts of scope
and visibility for variables,
constants, and methods when
creating classes in computer
programs

●

A3.4 Compare and contrast
object-oriented and procedural
programming paradigms

● ● ● ● ● ● ●

Develop in Swift
Explorations Teacher Guide

Grade 12

 99
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

A. Programming
Concepts and skills

A4.
Code Maintenance

A4.1 Write maintainable computer
programs by creating clear and
accurate internal documentation
that provides in-depth
explanations of complex blocks of
code

● ● ● ● ● ● ●

A4.2 Create clear and
maintainable external user
documentation (e.g., Help file,
how-to manual, FAQ, installation
procedures, backup and recovery
procedures, training materials) as
part of a complete software
development project

● ● ● ● ● ● ●

A4.3 Develop and implement a
formal testing plan for a software
development project to ensure
program correctness

● ● ● ● ● ● ●

B. Software
Development

Overall
Expectations

B1. Design standard algorithms
according to specifications ● ● ● ● ● ● ●

B2. Design software solutions
using object-oriented
programming concepts

● ● ● ● ● ● ●

B2. Design software solutions
using object-oriented
programming concepts

●

B4. Participate in a large student-
managed project, using proper
project management tools and
techniques to manage the
process effectively

●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 100
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

B. Software
Development

B1.
Designing Software Solutions

B1.1 Design algorithms to solve
practical mathematical problems
(e.g., amount of paint or carpet
needed, number of shingles
needed, energy costs, amount of
water needed for an aquarium,
projection of Aboriginal youth
population growth)

● ● ● ● ● ● ●

B1.2 Design algorithms that
require precision and accuracy
when rounding numbers (e.g.,
currency calculations,
amortization, recipe volume
changes)

●

B1.3 Design data validation
routines (e.g., capitalization;
formatting of postal codes,
telephone numbers, SINs, and
alphanumeric data; length and
range checking)

B2.
Object-oriented
Software Solutions

B2.1 Demonstrate the ability to
create and use instance methods
(e.g., constructors, mutators,
accessors) in a computer
program

●

B2.2 Design a simple base class
to represent objects or concepts
in a problem statement, using
program templates or skeletons

●

B2.3 Write methods that require
parameter passing in a computer
program

B3.
Graphical User Interfaces

B3.1 Design graphical user
interfaces that contain common
controls (e.g., buttons, labels, text
boxes)

●

B3.2 Design a user-friendly
graphical user inter-face that
helps to improve user
accessibility (e.g., for
multilingualism; for those with
limited eyesight or colour vision
deficiency)

●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 101
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

B. Software
Development

B3.
Graphical User Interfaces

B3.3 Evaluate a user interface for
conformity with a given
accessibility standard (e.g.,
Section 508 of the Rehabilitation
Act (US), W3C User Interface
Domain, or a student or teacher-
created standard)

●

B3.4 Design responses to user
events in a graphical user
interface

●

B4.
Student-managed Project

B4.1 Describe the phases of a
model (e.g., waterfall, iterative, XP
[Extreme Programming], RAD
[Rapid Application Development])
of the software development life
cycle

B4.2 Describe the phases of a
model (e.g., waterfall, iterative, XP
[Extreme Programming], RAD
[Rapid Application Development])
of the software development life
cycle

●

B4.3 Use project management
tools (e.g., Gantt chart, PERT
chart) and time management
tools (e.g., organizer, calendar) to
help develop a software project

● ● ● ● ● ● ●

B4.4 Use industry-standard
programming tools (e.g., UML
[Unified Modeling Language],
diagrams, structure charts, flow
charts, pseudocode) to develop a
software project

● ● ● ● ● ● ●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 102
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions
and

Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

C. Programming
Environment

Overall
Expectations

C1. demonstrate the ability to use project
management tools to plan and track
activities for a software development
project

● ● ● ● ● ● ●

C2. demonstrate the ability to use software
development tools to design and write a
computer program

● ● ● ● ● ● ● ●

C1.
Project Management Tools

C1.1 Use software tools (e.g., email, wikis,
blogs, task lists, bulletin boards,
spreadsheets, shared calendars) to plan
and track activities during a software
development project

● ● ● ● ● ● ●

C1.2 Communicate information about
project status (e.g., completed, in progress,
not started, problems encountered,
recommended modification to deadlines)
effectively in writing throughout the project

● ● ● ● ● ● ●

C2.
Software Development Tools

C2.1 Use the features of a software
development environment to debug
programs and create functioning computer
programs

● ● ● ● ● ● ●

C2.2 Work independently, using the Help
function, to resolve syntax issues while
programming

● ● ● ● ● ● ● ●

C2.3 Work independently, using reference
materials (e.g., code snippets, sample
programs, APIs, tutorials), to design and
write functioning computer programs

● ● ● ● ● ● ● ●

D. Computers
and Society

Overall
Expectations

D2. Demonstrate an understanding of
ethical issues and practices related to the
use of computers

● ●

D3. Investigate and report on emerging
computer technologies and their potential
impact on society and the economy.

● ● ●

D4. Research and report on the range of
career paths and lifelong learning
opportunities in software development or a
computer-related field

● ●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 103
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

D. Computers
and Society

D2.
Ethical Practices

D2.1 Investigate and describe an
ethical issue related to the use of
computers (e.g., piracy, privacy,
security, phishing, spyware,
cyberbullying)

● ●

D2.2 Describe the essential elements
of a code
of ethics for computer programmers,
and explain why there is a need for
such a code (e.g., plagiarism,
backdoors, spyware, unethical
programming practices)

● ●

D2.3 Outline and apply strategies to
encourage ethical computing
practices at home, at school, and at
work

● ●

D3.
Emerging Technologies

D3.1 Describe the evolution of some
emerging programming languages ● ● ● ● ● ● ● ●

D3.2 Investigate and report on
innovations in information technology
(e.g., webcasting, VoIP, multiplayer
online gaming) and their potential
impact on society and the economy

●

D3.3 Describe programming
requirements for a variety of
emerging technologies (e.g., web
programming, smartphones,
embedded systems)

● ● ● ●

D4.
Computer-related Careers

D4.1 Research and report on the
range of career opportunities in
software development, including
duties, responsibilities, qualifications,
and compensation

● ● ●

D4.2 Research and report on
opportunities for lifelong learning in
software development or a computer-
related field

●

D4.3 Evaluate their own development
of Essential Skills and work habits
that are important for success in
computer studies, as identified in the
Ontario Skills Passport

●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

ON 1–12
Correlations

Grade 12

 104

Develop in Swift
Explorations Teacher Guide

ICS4C — Computer Programming

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

A. Programming
Concepts and skills

Overall Expectations

A1. Demonstrate the ability to use
different data types types,
including one-dimensional arrays,
in computer programs

● ● ●

A2. Demonstrate the ability to use
standard algorithms in the design
and creation of computer
programs

● ● ● ●

A3. Demonstrate an
understanding of object-oriented
programming concepts and
practices in the design and
creation of computer programs;

● ● ● ●

A4. Create clear and accurate
internal and external
documentation to ensure the
maintainability of computer
software

● ● ● ●

A1.
Data Structures

A1.1 Perform operations on data
types typically used in business
applications (e.g., express money
amounts as dollars and cents,
express dates and times in
various formats)

● ● ● ●

A1.2 Use Boolean operators (e.g.,
AND, OR, NOT), comparison
operators (i.e., equal to, not equal
to, greater than, less than, greater
than or equal to, less than or
equal to), arithmetic operators
(e.g., addition, subtraction,
multiplication, division,
exponentiation, parentheses), and
order of operations correctly in
programming

● ● ●

A1.3 Describe the structure of
one-dimensional and two-
dimensional arrays and related
concepts including elements,
indexes, and bounds

● ●

Grade 12

 105

ICS4UICS4C

ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

A. Programming
Concepts and skills

A2.
Using Standard Algorithms

A2.1 Demonstrate the ability to
manipulate and convert data in a
computer program (e.g., parse
strings; convert data types such
as numeric to string, and string to
numeric; convert ‘yes’ or ‘no’ to
Boolean)

● ● ● ●

A2.3 Demonstrate the ability to
declare, initialize, modify, and
access one-dimensional and two-
dimensional arrays and elements
within a program

● ●

A2.4 Demonstrate the ability to
add, change, or delete elements
of an array of objects in a
program

● ●

A2.4 Demonstrate the ability to
add, change, or delete elements
of an array of objects in a
program

● ●

A3.
Object-oriented Programming

A3.1 Explain the importance of
designing reusable code in
computer programs

● ● ● ● ● ● ●

A3.2 Explain fundamental object-
oriented programming concepts
(e.g., classes, objects, methods)

● ● ● ●

A3.3 Apply the concepts of scope
and visibility for variables,
constants, and methods when
creating classes in computer
programs

● ● ● ●

A3.4 Compare and contrast
object-oriented and procedural
programming paradigms

● ● ● ● ● ● ●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 106
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

A. Programming
Concepts and skills

A4.
Code Maintenance

A4.1 Write maintainable computer
programs by creating clear and
accurate internal documentation
that provides in-depth
explanations of complex blocks of
code

● ● ● ●

A4.2 Create clear and
maintainable external user
documentation (e.g., Help file,
how-to manual, FAQ, installation
procedures, backup and recovery
procedures, training materials) as
part of a complete software
development project

● ● ● ●

A4.3 Develop and implement a
formal testing plan for a software
development project to ensure
program correctness

● ● ● ●

B. Software
Development

Overall
Expectations

B1. Design standard algorithms
according to specifications ● ● ● ●

B2. Design software solutions
using object-oriented
programming concepts

● ● ● ●

B3. Design user-friendly graphical
user interfaces (GUIs) that meet
user requirements

● ● ● ●

B4. Participate in a large student-
managed project, using proper
project management tools and
techniques to manage the
process effectively

● ● ● ●

B2.
Designing Software Solutions

B1.1 Design algorithms to solve
practical mathematical problems
(e.g., amount of paint or carpet
needed, number of shingles
needed, energy costs, amount of
water needed for an aquarium,
projection of Aboriginal youth
population growth)

● ● ● ●

Grade 12

ICS4UICS4C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 107
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

B. Software
Development

B2.
Designing Software Solutions

B1.2 Design algorithms that
require precision and accuracy
when rounding numbers (e.g.,
currency calculations,
amortization, recipe volume
changes)

●

B1.3 Design data validation
routines (e.g., capitalization;
formatting of postal codes,
telephone numbers, SINs, and
alphanumeric data; length and
range checking)

●

B2.
Object-oriented
Software Solutions

B2.1 Demonstrate the ability to
create and use instance methods
(e.g., constructors, mutators,
accessors) in a computer
program

● ●

B2.2 Design a simple base class
to represent objects or concepts
in a problem statement, using
program templates or skeletons

● ●

B2.3 Write methods that require
parameter passing in a computer
program

● ●

B3.
Graphical
User Interfaces

B3.1 Design graphical user
interfaces that contain common
controls (e.g., buttons, labels, text
boxes)

● ● ● ●

B3.2 Design a user-friendly
graphical user inter-face that
helps to improve user
accessibility (e.g., for
multilingualism; for those with
limited eyesight or colour vision
deficiency)

● ● ● ●

Grade 12

ICS4UICS4C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 108
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

B. Software
Development

B3.
Graphical
User Interfaces

B3.3 Evaluate a user interface for
conformity with a given
accessibility standard (e.g.,
Section 508 of the Rehabilitation
Act (US), W3C User Interface
Domain, or a student or teacher-
created standard)

● ● ● ●

B3.4 Design responses to user
events in a graphical user
interface

● ● ● ●

B4.
Student-managed Project

B4.1 Describe the phases of a
model (e.g., waterfall, iterative, XP
[Extreme Programming], RAD
[Rapid Application Development])
of the software development life
cycle

● ● ● ●

B4.2 Create a project plan for a
software development project,
outlining the tasks at each phase
of the software development life
cycle

● ● ● ●

B4.3 Use project management
tools (e.g., Gantt chart, PERT
chart) and time management
tools (e.g., organizer, calendar) to
help develop a software project

● ● ● ●

B4.4 Use industry-standard
programming tools (e.g., UML
[Unified Modeling Language],
diagrams, structure charts, flow
charts, pseudocode) to develop a
software project

● ● ● ●

C. Programming
Environment

Overall
Expectations

C1. demonstrate the ability to use
project management tools to plan
and track activities for a software
development project

● ● ● ●

C2. demonstrate the ability to use
software development tools to
design and write a computer
program

● ● ● ●

Grade 12

ICS4UICS4C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 109
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

C. Programming
Environment

C1.
Project Management Tools

C1.1 Use software tools (e.g.,
email, wikis, blogs, task lists,
bulletin boards, spreadsheets,
shared calendars) to plan and
track activities during a software
development project

● ● ● ●

C1.2 Communicate information
about project status (e.g.,
completed, in progress, not
started, problems encountered,
recommended modification to
deadlines) effectively in writing
throughout the project

● ● ● ●

C2.
Software Development Tools

C2.1 Use the features of a
software development
environment to debug programs
and create functioning computer
programs

● ● ● ●

C2.2 Work independently, using
the Help function, to resolve
syntax issues while programming

● ● ● ●

C2.3 Work independently, using
reference materials (e.g., code
snippets, sample programs, APIs,
tutorials), to design and write
functioning computer programs

● ● ● ● ● ● ● ●

D. Computers
and Society

Overall
Expectations

D2. Demonstrate an
understanding of ethical issues
and practices related to the use of
computers

● ● ● ● ● ●

D3. Investigate and report on
emerging computer technologies
and their potential impact on
society and the economy

● ● ● ●

D4. Research and report on the
range of career paths and lifelong
learning opportunities in software
development or a computer-
related field

●

Grade 12

ICS4UICS4C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

 110
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1:
Values

pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp. 169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

D. Computers
and Society

D2.
Ethical Practices

D2.1 Investigate and describe an
ethical issue related to the use of
computers (e.g., piracy, privacy,
security, phishing, spyware,
cyberbullying)

● ● ● ● ● ●

D2.2 Describe the essential elements
of a code
of ethics for computer programmers,
and explain why there is a need for
such a code (e.g., plagiarism,
backdoors, spyware, unethical
programming practices)

● ● ● ● ● ●

D2.3 Outline and apply strategies to
encourage ethical computing
practices at home, at school, and at
work

● ● ● ● ● ●

D3.
Emerging Technologies

D3.1 Describe the evolution of some
emerging programming languages ● ● ● ● ● ● ● ●

D3.2 Investigate and report on
innovations in information technology
(e.g., webcasting, VoIP, multiplayer
online gaming) and their potential
impact on society and the economy

● ● ● ●

D3.3 Describe programming
requirements for a variety of
emerging technologies (e.g., web
programming, smartphones,
embedded systems)

● ● ● ●

D4.
Computer-related Careers

D4.1 Research and report on the
range of career opportunities in
software development, including
duties, responsibilities, qualifications,
and compensation

●

D4.2 Research and report on
opportunities for lifelong learning in
software development or a
computer-related field

●

D4.3 Evaluate their own development
of Essential Skills and work habits
that are important for success in
computer studies, as identified in the
Ontario Skills Passport

Grade 12

ICS4UICS4C

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ON 1–12
Correlations Grade 12

Grade 12

 111

Everyone Can Code
Puzzles Teacher Guide

ICS4U — Computer Science

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

A. Programming
Concepts and skills

Overall
Expectations

A1. Demonstrate the
ability to use different
data types and
expressions when
creating computer
programs

● ● ● ● ●

A2. Describe and use
modular programming
concepts and principles in
the creation of computer
programs

A3. Design and write
algorithms and
subprograms to solve a
variety of problems

A4. Use proper code
maintenance techniques
when creating computer
programs

● ● ● ● ● ● ● ● ● ●

A1.
Data Types and
Expressions

A1.2 Demonstrate an
understanding of type
conversion (e.g., string-
to-integer, character-to-
integer, integer-to-
character, floating point-
to-integer, casting in an
inheritance hierarchy)

A1.3 Demonstrate the
ability to use non-numeric
comparisons (e.g.,
strings, comparable
interface) in computer
programs

A1.4 Demonstrate an
understanding of the
limitations of finite data
representations (e.g.,
integer bounds, precision
of floating-point real
numbers, rounding errors)
when designing
algorithms

●

 112
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

A. Programming
Concepts and skills

A1.
Data Types and
Expressions

A1.5 Describe and use
one-dimensional arrays of
compound data types
(e.g., objects, structures,
records) in a computer
program

●

A2.
Modular Programming

A2.1 Create a modular
program that is divided
among multiple files (e.g.,
user-defined classes,
libraries, modules)

A2.2 Use modular design
concepts that support
reusable code (e.g.,
encapsulation,
inheritance, method
overloading, method
overriding,
polymorphism)

A2.3 Demonstrate the
ability to modify existing
modular program code to
enhance the functionality
of a program

A3.
Designing Algorithms

A3.2 Create linear and
binary search algorithms
to find data in an array

●

A3.3 Create subprograms
to insert and delete array
elements

A3.4 Create a sort
algorithm (e.g., bubble,
insertion, selection) to
sort data in an array

A3.5 Create algorithms to
process elements in two-
dimensional arrays (e.g.,
multiply each element by
a constant, interchange
elements, multiply
matrices, process pixels
in an image)

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Grade 12

Develop in Swift
Explorations Teacher Guide

 113
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

A. Programming
Concepts and skills

A3.
Designing Algorithms

A3.6 Design a simple and
efficient recursive
algorithm (e.g., calculate
a factorial, translate
numbers into words,
perform a merge sort,
generate fractals, perform
XML parsing)

A4.
Code Maintenance

A4.1 Work independently,
using support
documentation (e.g., IDE
Help, tutorials, websites,
user manuals), to resolve
syntax issues during
software development

● ● ● ● ● ● ● ● ● ●

A4.2 Develop and
implement a formal
testing plan (e.g., unit
testing, integration
testing, regression
testing) for a software
project to ensure program
correctness

● ● ● ● ● ● ● ● ● ●

A4.2 Develop and
implement a formal
testing plan (e.g., unit
testing, integration
testing, regression
testing) for a software
project to ensure program
correctness

A4.4 Create clear and
maintainable external
user documentation (e.g.,
Help files, training
materials, user manuals)

● ● ● ● ● ● ● ● ● ●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 114
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

B. Software
Development

Overall
Expectations

B1. Demonstrate the
ability to manage the
software development
process effectively,
through all of its stages –
planning, development,
production, and closing

B2. Apply standard
project management
techniques in the context
of a student-managed
team project

B1.
Project Management

B1.1 Create a software
project plan by producing
a software scope
document and
determining the tasks,
deliverables, and
schedule

B1.2 Develop the software
product according to the
project plan (i.e., ensure
that the software meets
end user needs, functions
as intended, and can be
produced within quality
standards, budget, and
timelines)

B1.3 Produce the
software according to
specifications (i.e., code,
test, deploy), and create
user documentation and
training materials

B1.4 Use an appropriate
project management tool
(e.g., Gantt chart, PERT
chart, calendar) to
manage project
components

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 115
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

B.Software
Development

B1.
Project Management

B1.5 Close the project
(i.e., confirm that software
meets all user
requirements, deliver
software in appropriate
format, plan software
support and
maintenance)

B1.6 Review the
management of the
project (e.g., compare
plan to actual
performance, outline
successes, make
recommendations for
improvement) and
prepare a report in an
appropriate format

B1.7 Demonstrate the
ability to use shared
resources to manage
source code effectively
and securely (e.g.,
organize software
components using shared
files and folders with
timestamps, and proper
version control)

B2.
Software Project
Contribution

B2.1 Demonstrate the
ability to contribute, as a
team member, to the
planning, development,
and production of a large
software project

B2.2 Demonstrate the
ability to meet project
goals and deadlines by
managing individual time
during a group project

B2.3 Reflect on, and
assess, team and
individual progress during
the project review

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 116
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

C. Design
Modular Programs

Overall
Expectations

C1. Demonstrate the
ability to apply modular
design concepts in
computer programs

● ● ● ● ● ● ● ● ● ●

C2. Analyse algorithms
for their effectiveness in
solving a problem

● ● ● ● ● ● ● ● ● ●

C1.
Modular Design

C1.1 Decompose a
problem into modules,
classes, or abstract data
types (e.g., stack, queue,
dictionary) using an
object-oriented design
methodology (e.g., CRC
[Class Responsibility
Collaborator] or UML
[Unified Modeling
Language])

C1.2 Demonstrate the
ability to apply data
encapsulation in program
design (e.g., classes,
records, structures)

C1.3 Demonstrate the
ability to apply the
process of functional
decomposition in
subprogram design.

C1.4 Apply the principle
of reusability in program
design (e.g., in modules,
subprograms, classes,
methods, and
inheritance)

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 117
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

C. Design
Modular Programs

C2.
Algorithm Analysis

C2.1 Demonstrate the
ability to analyse a
precondition (i.e., starting
state) and a postcondition
(i.e., ending state) in an
algorithm

C2.2 Compare the
efficiency of linear and
binary searches, using
run times and
computational complexity
analysis (e.g., to analyse
the number of statements
executed, the number of
iterations of a loop, or the
number of comparisons
performed)

C2.3 Compare the
efficiency of sorting
algorithms, using run
times and computational
complexity analysis (e.g.,
to analyse the number of
statements executed, the
number of iterations of a
loop, or the number of
comparisons performed).

C2.4 Identify common
pitfalls in recursive
functions (e.g., infinite
recursion, exponential
growth in recursive
algorithms such as
Fibonacci numbers)

D. Topics in
Computer Science

Overall
Expectations

D2. Analyse ethical issues
and propose strategies to
encourage ethical
practices related to the
use of computers

● ●

D3. Analyse the impact of
emerging computer
technologies on society
and the economy

● ●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 118
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

D. Topics in
Computer Science

Overall
Expectations

D4. Research and report
on different areas of
research in computer
science, and careers
related to computer
science

● ●

D2.
Ethical Practices

D2.1 Investigate and
analyse an ethical issue
related to the use of
computers (e.g., sharing
passwords, music and
video file downloading,
software piracy, keystroke
logging, phishing,
cyberbullying)

D2.2 Describe the
essential elements of a
code of ethics for
computer programmers
(e.g., ACM [Association
for Computing
Machinery] and IEEE
[Institute of Electrical and
Electronics Engineers]
standards) and explain
why there is a need for
such a code (e.g.,
plagiarism, backdoors,
viruses, spyware, logic
bombs).

D3.
Emerging Technologies
and Society

D3.1 Explain the impact of
a variety of emerging
technologies on various
members of society and
on societies and cultures
around the world and on
the economy

●

D3.2 Investigate an
emerging technology and
produce a report using an
appropriate format (e.g.,
technical report, website,
presentation software,
video)

●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

 119
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. I–xiv

Commands
pp. 1–24

Functions
pp. 25–50

For Loops
pp. 51–69

Variables
pp.70–92

Conditional
Code

pp. 93–115

Types and
Initialization
pp. 116–134

Functions
with

Parameters
pp. 135–154

Logical
Operators

pp. 155–173

While
Loops

pp. 174–192

Arrays and
Refactoring
pp. 193–214

D. Topics in
Computer Science

D4.
Exploring
Computer Science

D4.1 Report on some
areas of collaborative
research between
computer science and
other fields (e.g.,
bioinformatics, geology,
economics, linguistics,
health informatics,
climatology, sociology,
art), on the basis of
information found in
industry publications
(e.g., from the ACM and
IEEE)

D4.2 Investigate a topic in
theoretical computer
science (e.g.,
cryptography, graph
theory, logic,
computability theory,
attribute grammar,
automata theory, data
mining, artificial
intelligence, robotics,
computer vision, image
processing), and produce
a report, using an
appropriate format (e.g.,
website, presentation
software, video).

●

D4.3 Research and
describe careers
associated with computer
studies (e.g., computer
scientist, software
engineer, systems
analyst), and the
postsecondary education
required to prepare for
them

●

D4.4 Evaluate their own
development of Essential
Skills and work habits that
are important for success
in computer studies, as
identified in the Ontario
Skills Passport.

●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

ICS4UICS4C

Everyone Can Code
Adventures Teacher Guide

Develop in Swift
Explorations Teacher Guide

ON 1–12
Correlations

Grade 12

 120

Everyone Can Code
Adventures Teacher Guide

ICS4U— Computer Science

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

A. Programming
Concepts and skills

Overall Expectations

A1. Demonstrate the ability to use
different data types and
expressions when creating
computer programs

● ● ● ● ● ● ●

A2. Describe and use modular
programming concepts and
principles in the creation of
computer programs

●

A3. Design and write algorithms
and subprograms to solve a
variety of problems

● ● ● ● ● ● ●

A4. Use proper code
maintenance techniques when
creating computer programs

● ● ● ● ● ● ●

A1.
Data Types and Expressions

A1.1 Demonstrate the ability to
use integer division and resultant
remainders in computer programs

A1.2 Demonstrate an
understanding of type conversion
(e.g., string-to-integer, character-
to- integer, integer-to-character,
floating point-to-integer, casting
in an inheritance hierarchy)

A1.3 Demonstrate the ability to
use non-numeric comparisons
(e.g., strings, comparable
interface) in computer programs

A1.4 Demonstrate an
understanding of the limitations
of finite data representations
(e.g., integer bounds, precision of
floating-point real numbers,
rounding errors) when designing
algorithms

A1.5 Describe and use one-
dimensional arrays of compound
data types (e.g., objects,
structures, records) in a computer
program

● ● ● ● ● ●

Grade 12

 121
ON 1–12
Correlations

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS4UICS4C

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

A. Programming
Concepts and skills

A2.
Modular Programming

A2.1 Create a modular program
that is divided among multiple
files (e.g., user-defined classes,
libraries, modules)

A2.2 Use modular design
concepts that support reusable
code (e.g., encapsulation,
inheritance, method overloading,
method overriding,
polymorphism)

●

A2.3 Demonstrate the ability to
modify existing modular program
code to enhance the functionality
of a program

●

A3.
Designing Algorithms

A3.1 Demonstrate the ability to
read from, and write to, an
external file (e.g., text file, binary
file, data-base, XML file) from
within a computer program

A3.2 Create linear and binary
search algorithms to find data in
an array

● ●

A3.3 Create subprograms to
insert and delete array elements ● ● ● ●

A3.4 Create a sort algorithm (e.g.,
bubble, insertion, selection) to
sort data in an array

●

A3.5 Create algorithms to
process elements in two-
dimensional arrays (e.g., multiply
each element by a constant,
interchange elements, multiply
matrices, process pixels in an
image)

●

A3.6 Design a simple and
efficient recursive algorithm (e.g.,
calculate a factorial, translate
numbers into words, perform a
merge sort, generate fractals,
perform XML parsing)

Grade 12

Develop in Swift
Explorations Teacher Guide

 122
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

A. Programming
Concepts and skills

A4.
Code Maintenance

A4.1 Work independently, using support
documentation (e.g., IDE Help, tutorials,
websites, user manuals), to resolve
syntax issues during software
development.

● ● ● ● ● ● ● ●

A4.2 Develop and implement a formal
testing plan (e.g., unit testing,
integration testing, regression testing)
for a software project to ensure
program correctness.

● ● ● ● ● ● ●

A4.3 Create fully documented program
code according to industry standards
(e.g., doc comments, docstrings, block
comments, line comments).

● ● ● ● ● ● ●

A4.4 Create clear and maintainable
external user documentation (e.g., Help
files, training materials, user manuals).

● ● ● ● ● ● ●

B. Software
Development

Overall
Expectations

B1. Demonstrate the ability to manage
the software development process
effectively, through all of its stages —
planning, development, production, and
closing

B2. Apply standard project
management techniques in the context
of a student-managed team project

● ● ● ● ● ● ●

B1.
Project Management

B1.1 Create a software project plan by
producing a software scope document
and determining the tasks, deliverables,
and schedule

B1.2 Develop the software product
according to the project plan (i.e.,
ensure that the software meets end
user needs, functions as intended, and
can be produced within quality
standards, budget, and timelines)

B1.3 Produce the software according to
specifications (i.e., code, test, deploy),
and create user documentation and
training materials

Grade 12

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS4UICS4C

Develop in Swift
Explorations Teacher Guide

 123
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

B. Software
Development

B1.
Project Management

B1.4 Use an appropriate project
management tool (e.g., Gantt chart,
PERT chart, calendar) to manage
project components

● ● ● ● ● ● ●

B1.5 Close the project (i.e., confirm
that software meets all user
requirements, deliver software in
appropriate format, plan software
support and maintenance)

B1.6 Review the management of the
project (e.g., compare plan to actual
performance, outline successes,
make recommendations for
improvement) and prepare a report in
an appropriate format

B1.7 Demonstrate the ability to use
shared resources to manage source
code effectively and securely (e.g.,
organize software components using
shared files and folders with
timestamps, and proper version
control)

B2.
Software Project Contribution

B2.1 Demonstrate the ability to
contribute, as a team member, to the
planning, development, and
production of a large software project

B2.2 Demonstrate the ability to meet
project goals and deadlines by
managing individual time during a
group project

● ● ● ● ● ● ●

B2.3 Reflect on, and assess, team
and individual progress during the
project review

● ● ● ● ● ● ●

C. Designing Modular
Programs

Overall
Expectations

C1. Demonstrate the ability to apply
modular design concepts in
computer programs

●

C2. Analyse algorithms for their
effectiveness in solving a problem ● ● ● ● ● ● ●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS4UICS4C

Develop in Swift
Explorations Teacher Guide

 124
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

C. Designing Modular
Programs

C1.
Modular Design

C1.1 Decompose a problem into
modules, classes, or abstract
data types (e.g., stack, queue,
dictionary) using an object-
oriented design methodology
(e.g., CRC [Class Responsibility
Collaborator] or UML [Unified
Modeling Language])

●

C1.2 Demonstrate the ability to
apply data encapsulation in
program design (e.g., classes,
records, structures)

●

C1.3 Demonstrate the ability to
apply the process of functional
decomposition in subprogram
design

●

C1.4 Apply the principle of
reusability in program design
(e.g., in modules, subprograms,
classes, methods, and
inheritance)

●

C2.
Algorithm Analysis

C2.1 Demonstrate the ability to
analyse a precondition (i.e.,
starting state) and a
postcondition (i.e., ending state)
in an algorithm

● ● ● ● ● ● ●

C2.2 Compare the efficiency of
linear and binary searches, using
run times and computational
complexity analysis (e.g., to
analyse the number of statements
executed, the number of
iterations of a loop, or the number
of comparisons performed)

C2.3 Compare the efficiency of
sorting algorithms, using run
times and computational
complexity analysis (e.g., to
analyse the number of statements
executed, the number of
iterations of a loop, or the number
of comparisons performed)

C2.4 Identify common pitfalls in
recursive functions (e.g., infinite
recursion, exponential growth in
recursive algorithms such as
Fibonacci numbers)

Grade 12

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS4UICS4C

Develop in Swift
Explorations Teacher Guide

 125
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

D. Topics in
Computer Science

Overall
Expectations

D2. Analyse ethical issues and
propose strategies to encourage
ethical practices related to the
use of computers

● ● ●

D3. Analyse the impact of
emerging computer technologies
on society and the economy

●

D4. Research and report on
different areas of research in
computer science, and careers
related to computer science

● ● ● ●

D2.
Ethical Practices

D2.1 Investigate and analyse an
ethical issue related to the use of
computers (e.g., sharing
passwords, music and video file
downloading, software piracy,
keystroke logging, phishing,
cyberbullying)

● ● ●

D2.2 Describe the essential
elements of a code of ethics for
computer programmers (e.g.,
ACM [Association for Computing
Machinery] and IEEE [Institute of
Electrical and Electronics
Engineers] standards) and explain
why there is a need for such a
code (e.g., plagiarism, backdoors,
viruses, spyware, logic bombs)

● ● ●

D3.
Emerging Technologies
and Society

D3.1 Explain the impact of a
variety of emerging technologies
on various members of society
and on societies and cultures
around the world and on the
economy

●

D3.2 Investigate an emerging
technology and produce a report
using an appropriate format (e.g.,
technical report, website,
presentation software, video)

●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS4UICS4C

Develop in Swift
Explorations Teacher Guide

 126
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–9

Objects in
Views

pp. 10–47

Events and
Handlers
pp. 48–72

Arrays
pp. 73–104

More Events
and Handlers
pp. 105–129

Functions and
Arguments
pp. 130–160

Return Types
and Output
pp. 161–179

Classes and
Components
pp. 180–221

D. Topics in
Computer Science

D4.
Exploring Computer
Science

D4.1 Report on some areas of
collaborative research between
computer science and other fields
(e.g., bioinformatics, geology,
economics, linguistics, health
informatics, climatology,
sociology, art), on the basis of
information found in industry
publications (e.g., from the ACM
and IEEE)

●

D4.2 Investigate a topic in
theoretical computer science
(e.g., cryptography, graph theory,
logic, computability theory,
attribute grammar, automata
theory, data mining, artificial
intelligence, robotics, computer
vision, image processing), and
produce a report, using an
appropriate format (e.g., website,
presentation software, video)

●

D4.3 Research and describe
careers associated with computer
studies (e.g., computer scientist,
software engineer, systems
analyst), and the postsecondary
education required to prepare for
them

● ● ● ●

D4.4 Evaluate their own
development of Essential Skills
and work habits that are
important for success in
computer studies, as identified in
the Ontario Skills Passport

●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS4UICS4C

Develop in Swift
Explorations Teacher Guide

ON 1–12
Correlations

Grade 12

 127

Develop in Swift
Explorations Teacher Guide

ICS4U — Computer Science

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp.169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

A. Programming
Concepts and skills

Overall
Expectations

A1. Demonstrate the ability to use
different data types and
expressions when creating
computer programs

● ● ● ●

A2. Describe and use modular
programming concepts and
principles in the creation of
computer programs

● ● ●

A3. Design and write algorithms
and subprograms to solve a
variety of problems

● ● ● ●

A4. Use proper code
maintenance techniques when
creating computer programs

● ● ● ●

A1.
Data Types and Expressions

A1.1 Demonstrate the ability to
use integer division and resultant
remainders in computer programs

A1.2 Demonstrate an
understanding of type conversion
(e.g., string-to-integer, character-
to- integer, integer-to-character,
floating point-to-integer, casting
in an inheritance hierarchy)

A1.3 Demonstrate the ability to
use nonnumeric comparisons
(e.g., strings, comparable
interface) in computer programs

●

A1.4 Demonstrate an
understanding of the limitations
of finite data representations
(e.g., integer bounds, precision of
floating-point real numbers,
rounding errors) when designing
algorithms

● ●

A1.5 Describe and use one-
dimensional arrays of compound
data types (e.g., objects,
structures, records) in a computer
program

● ●

Grade 12

 128
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp.169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

A. Programming
Concepts and skills

A2.
Modular Programming

A2.1 Create a modular program
that is divided among multiple
files (e.g., user-defined classes,
libraries, modules)

A2.2 Use modular design
concepts that support reusable
code (e.g., encapsulation,
inheritance, method overloading,
method overriding,
polymorphism)

● ● ●

A2.3 Demonstrate the ability to
modify existing modular program
code to enhance the functionality
of a program

● ● ●

A3.
Designing Algorithms

A3.1 Demonstrate the ability to
read from, and write to, an
external file (e.g., text file, binary
file, data-base, XML file) from
within a computer program

A3.2 Create linear and binary
search algorithms to find data in
an array

●

A3.3 Create subprograms to
insert and delete array elements ● ●

A3.4 Create a sort algorithm (e.g.,
bubble, insertion, selection) to
sort data in an array

● ●

A3.5 Create algorithms to
process elements in two-
dimensional arrays (e.g., multiply
each element by a constant,
interchange elements, multiply
matrices, process pixels in an
image)

A3.6 Design a simple and
efficient recursive algorithm (e.g.,
calculate a factorial, translate
numbers into words, perform a
merge sort, generate fractals,
perform XML parsing)

Grade 12

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS4UICS4C

 129
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp.169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

A. Programming
Concepts and skills

A4.
Code Maintenance

A4.1 Work independently, using
support documentation (e.g., IDE
Help, tutorials, websites, user
manuals), to resolve syntax issues
during software development

● ● ● ● ● ● ● ●

A4.2 Develop and implement a
formal testing plan (e.g., unit
testing, integration testing,
regression testing) for a software
project to ensure program
correctness

● ● ● ●

A4.3 Create fully documented
program code according to
industry standards (e.g., doc
comments, docstrings, block
comments, line comments)

● ● ● ●

A4.4 Create clear and
maintainable external user
documentation (e.g., Help files,
training materials, user manuals)

● ● ● ●

B. Software
Development

Overall
Expectations

B1. Demonstrate the ability to
manage the software
development process effectively,
through all of its stages —
planning, development,
production, and closing

●

B2. Apply standard project
management techniques in the
context of a student-managed
team project

● ● ● ●

B1.
Project Management

B1.1 Create a software project
plan by producing a software
scope document and determining
the tasks, deliverables, and
schedule

● ●

B1.2 Develop the software
product according to the project
plan (i.e., ensure that the software
meets end user needs, functions
as intended, and can be produced
within quality standards, budget,
and timelines)

● ● ● ●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS4UICS4C

 130
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp.169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

B. Software
Development

B1.
Project Management

B1.3 Produce the software
according to specifications (i.e.,
code, test, deploy), and create
user documentation and training
materials

● ● ● ●

B1.4 Use an appropriate project
management tool (e.g., Gantt
chart, PERT chart, calendar) to
manage project components

● ● ● ●

B1.5 Close the project (i.e.,
confirm that software meets all
user requirements, deliver
software in appropriate format,
plan software support and
maintenance)

● ● ● ●

B1.6 Review the management of
the project (e.g., compare plan to
actual performance, outline
successes, make
recommendations for
improvement) and prepare a
report in an appropriate format

● ● ● ●

B1.7 Demonstrate the ability to
use shared resources to manage
source code effectively and
securely (e.g., organize software
components using shared files
and folders with timestamps, and
proper version control)

● ● ● ●

B2.
Software Project Contribution

B2.1 Demonstrate the ability to
contribute, as a team member, to
the planning, development, and
production of a large software
project

● ● ● ●

B2.2 Demonstrate the ability to
meet project goals and deadlines
by managing individual time
during a group project

● ● ● ●

B2.3 Reflect on, and assess, team
and individual progress during the
project review

● ● ● ●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS4UICS4C

 131
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp.169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

C. Designing Modular
Programs

Overall
Expectations

C1. Demonstrate the ability to
apply modular design concepts in
computer programs

● ● ●

C2. Analyse algorithms for their
effectiveness in solving a problem ● ● ● ●

C1.
Modular Design

C1.1 Decompose a problem into
modules, classes, or abstract
data types (e.g., stack, queue,
dictionary) using an object-
oriented design methodology
(e.g., CRC [Class Responsibility
Collaborator] or UML [Unified
Modeling Language])

● ● ●

C1.2 Demonstrate the ability to
apply data encapsulation in
program design (e.g., classes,
records, structures)

● ● ●

C1.3 Demonstrate the ability to
apply the process of functional
decomposition in subprogram
design

● ● ●

C1.4 Apply the principle of
reusability in program design
(e.g., in modules, subprograms,
classes, methods, and
inheritance)

● ● ●

C2.
Algorithm Analysis

C2.1 Demonstrate the ability to
analyse a precondition (i.e.,
starting state) and a
postcondition (i.e., ending state)
in an algorithm

● ● ●

C2.2 Compare the efficiency of
linear and binary searches, using
run times and computational
complexity analysis (e.g., to
analyse the number of statements
executed, the number of
iterations of a loop, or the number
of comparisons performed)

●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS4UICS4C

 132
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp.169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

C. Designing Modular
Programs

C2.
Algorithm Analysis

C2.3 Compare the efficiency of
sorting algorithms, using run
times and computational
complexity analysis (e.g., to
analyse the number of statements
executed, the number of
iterations of a loop, or the number
of comparisons performed)

●

C2.4 Identify common pitfalls in
recursive functions (e.g., infinite
recursion, exponential growth in
recursive algorithms such as
Fibonacci numbers)

D. Topics in
Computer Science

Overall
Expectations

D2. Analyse ethical issues and
propose strategies to encourage
ethical practices related to the
use of computers

● ● ● ● ● ●

D3. Analyse the impact of
emerging computer technologies
on society and the economy

● ● ● ●

D4. Research and report on
different areas of research in
computer science, and careers
related to computer science

D2.
Ethical Practices

D2.1 investigate and analyse an
ethical issue related to the use of
computers (e.g., sharing
passwords, music and video file
downloading, software piracy,
keystroke logging, phishing,
cyberbullying)

● ● ● ● ● ●

D2.2 Describe the essential
elements of a code of ethics for
computer programmers (e.g.,
ACM [Association for Computing
Machinery] and IEEE [Institute of
Electrical and Electronics
Engineers] standards) and explain
why there is a need for such a
code (e.g., plagiarism, backdoors,
viruses, spyware, logic bombs)

● ● ● ● ● ●

Grade 12

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS4UICS4C

 133
ON 1–12
Correlations

Ontario
Curriculum
Expectations

Intro
pp. 1–27

Unit 1: Values
pp. 28–138

Episode 1:
The TV Club
pp. 139–168

Unit 2:
Algorithms
pp.169–273

Episode 2: The
Viewing Party
pp. 274–299

Unit 3:
Organizing Data

pp. 300–448

Episode 3:
Sharing Photos

pp. 449–482

Unit 4: Building
Apps

pp. 483–702

Topics in
Computer Science

D3.
Emerging Technologies
and Society

D3.1 Explain the impact of a
variety of emerging technologies
on various members of society
and on societies and cultures
around the world and on the
economy

● ● ● ●

D3.2 Investigate an emerging
technology and produce a report
using an appropriate format (e.g.,
technical report, website,
presentation software, video)

● ● ● ●

D4.
Exploring Computer
Science

D4.1 Report on some areas of
collaborative research between
computer science and other fields
(e.g., bioinformatics, geology,
economics, linguistics, health
informatics, climatology,
sociology, art), on the basis of
information found in industry
publications (e.g., from the ACM
and IEEE)

●

D4.2 Investigate a topic in
theoretical computer science
(e.g., cryptography, graph theory,
logic, computability theory,
attribute grammar, automata
theory, data mining, artificial
intelligence, robotics, computer
vision, image processing), and
produce a report, using an
appropriate format (e.g., website,
presentation software, video)

D4.3 Research and describe
careers associated with computer
studies (e.g., computer scientist,
software engineer, systems
analyst), and the postsecondary
education required to prepare for
them

●

D4.4 Evaluate their own
development of Essential Skills
and work habits that are
important for success in
computer studies, as identified in
the Ontario Skills Passport

Grade 12

Everyone Can Code
Puzzles Teacher Guide

Develop in Swift
Explorations Teacher Guide

Everyone Can Code
Adventures Teacher Guide

ICS4UICS4C

	Resources
	Contents
	Grade 1
	Mathematics
	Everyone Can Code Early Learners Teacher Guide

	Grade 2
	Mathematics
	Everyone Can Code Early Learners Teacher Guide

	Grade 3
	Mathematics
	Everyone Can Code Early Learners Teacher Guide

	Grade 4
	Mathematics
	Everyone Can Code Early Learners Teacher Guide
	Mathematics
	Everyone Can Code Puzzles Teacher Guide

	Grade 5
	Mathematics
	Everyone Can Code Puzzles Teacher Guide

	Grade 6
	Mathematics
	Everyone Can Code Puzzles Teacher Guide

	Grade 7
	Mathematics
	Everyone Can Code Puzzles Teacher Guide
	Mathematics
	Everyone Can Code Adventures Teacher Guide

	Grade 8
	Mathematics
	Everyone Can Code Puzzles Teacher Guide
	Mathematics
	Everyone Can Code Adventures Teacher Guide
	Mathematics
	Develop in Swift Explorations Teacher Guide

	Grade 9
	Mathematics
	Everyone Can Code Puzzles Teacher Guide
	Mathematics
	Everyone Can Code Adventures Teacher Guide
	Mathematics
	Develop in Swift Explorations Teacher Guide

	Grade 10
	ICS2O — Intro to Computer Studies
	Everyone Can Code Puzzles Teachers Guide
	ICS2O — Intro to Computer Studies
	Everyone Can Code Adventures Teacher Guide
	ICS2O – Intro to Computer Studies
	Develop in Swift Explorations Teacher Guide

	Grade 11
	ICS3C — Intro to Computer Programming
	Everyone Can Code Puzzles Teacher Guide
	ICS3C — Intro to Computer Programming
	Everyone Can Code Adventures Teacher Guide
	ICS3C — Intro to Computer Programming
	Develop in Swift Explorations Teacher Guide
	ICS3U — Intro to Computer Science
	Everyone Can Code Puzzles Teacher Guide
	ICS3U — Intro to Computer Science
	Everyone Can Code Adventures Teacher Guide
	ICS3U — Intro to Computer Science
	Develop in Swift Explorations Teacher Guide

	Grade 12
	ICS4C — Computer Programming
	Everyone Can Code Puzzles Teacher Guide
	ICS4C — Computer Programming
	Everyone Can Code Adventures Teacher Guide
	ICS4C — Computer Programming
	Develop in Swift Explorations Teacher Guide
	ICS4U — Computer Science
	Everyone Can Code Puzzles Teacher Guide
	ICS4U— Computer Science
	Everyone Can Code Adventures Teacher Guide
	ICS4U — Computer Science
	Develop in Swift Explorations Teacher Guide

